
10/09/2017 Comp 411 - Fall 2017

Complementary Pullups and Pulldowns

1

We design components with complementary pullup
and pulldown logic (i.e., the pulldown should be “on”
when the pullup is “off” and vice versa).

pullup pulldown F(I1,…,In)
on off driven “1”
off on driven “0”
on on driven “X”
off off no connection

This is what the “C”
in CMOS stands for!

Convention: In general,
let’s avoid these last
two cases.

When they are used, the
resulting device is not
STRICTLY following our
STATIC DISCIPLINE
(eg. Pass gates and
storage devices).

Such devices are only
QUASI-DIGITAL!

10/09/2017 Comp 411 - Fall 2017

CMOS Complements

2

What a nice
VOH you have...

Thanks. It runs
in the family...

On when A is “1” On when A is “0”

On when A is “1” and B is “1”: A && B

A

B
A B

On when A is “0”or B is “0”: (!A || !B)

On when A is “1” or B is “1”: A || B

A

B
A B

On when A is “0” and B is “0”: (!A && !B)

A A

Series N connections:

Parallel N connections:

Parallel P connections:

Series P connections:

10/09/2017 Comp 411 - Fall 2017

A Two-Input Logic Gate

3

A

B

What function does
this gate compute?

A B C
0 0
0 1
1 0
1 1

10/09/2017 Comp 411 - Fall 2017

Here’s Another…

4

What function does
this gate compute?

A B C
0 0
0 1
1 0
1 1

A

B

10/09/2017 Comp 411 - Fall 2017

General CMOS Gate Recipe

5

Step 1. Figure out pulldown network
that does what you want (i.e the set
of conditions where the output is ‘0’)
 e.g., F = A && (B || C)

A

B C

Step 2. Walk the hierarchy replacing
nfets with pfets, series subnets with
parallel subnets, and parallel subnets
with series subnets

A
B

C

Step 3. Combine pfet pullup
network from Step 2 with nfet
pulldown network from Step 1 to
form fully-complementary CMOS
gate.

But isn’t it
hard to wire
it all up?A B

C

A

B C

10/09/2017 Comp 411 - Fall 2017

One Last Exercise

Let’s construct a gate to compute:

F = A || (B && C) = NOT(OR(A,AND(B,C)))

6

Step 1: The pull-down network

Step 2: The complementary
pull-up network

F
A B

C

1
1
1
0
0
0
0
0

VddA

B C
A B C F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

OBSERVATION: CMOS gates tend to
be inverting! Precisely, one or more
“0” inputs are necessary to generate
a “1” output, and one or more “1”
inputs are necessary to generate a
“0” output. Why?

10/09/2017 Comp 411 - Fall 2017

Next time

Now that we can see what goes on inside of a single gate,
we’ll next use several them to compose larger systems
that compute other logic functions.

7

10/09/2017 Comp 411 - Fall 2017

Midterm practice

8

10/09/2017 Comp 411 - Fall 2017

Midterm practice

9

10/09/2017 Comp 411 - Fall 2017

Midterm Practice

10

10/09/2017 Comp 411 - Fall 2017

Enumerating and Composing Gates

● Combinational logic as/is
truth tables

● Composing gates
● What gates do we have?
● What gates do we need?
● Making gates from others
● A systematic approach

for implementing
combinational logic

Midterm #1 on Friday

11

10/09/2017 Comp 411 - Fall 2017

Now can we design larger systems

We need to start somewhere –
 usually with a functional specification

12

A
B YIf C is 1 then

copy B to Y,
otherwise copy

A to YC

If you are like most pragmatists you’d rather be given a table
or formula than solve a puzzle to understand a function. The
fact is, every combinational function can be expressed as a table.

“Truth tables” are a concise description of the combinational
system’s function, where an output is specified for *every*
input combination.

Argh… I’m tired of word games

Truth Table

10/09/2017 Comp 411 - Fall 2017

Truth Tables to gates?

We want to build a computer!
So far we know how to

 build a few CMOS gates
 using MOSFET transistors

 (NAND, NOR, INVERTER)

 But we are missing AND,
 OR, and XOR

What gates can we build
 using CMOS?

13

A

B

Logic
 Gates

F = A xor B

10/09/2017 Comp 411 - Fall 2017

What GATES can we build?

Recall, we need to design our gates using a pull-up
network of P-FETs and a pull-down network of N-FETs.

What gates can we
- build?
- define?

Let’s start by
considering only
2-input gates.

14

AND OR NAND NOR

How many possible 2-input gates are there?
KEY IDEA: As many as there are 2-input truth tables.
2-inputs → 22 = 4 rows, each with an output
4-outputs → 24 = 16 possible functions

10/09/2017 Comp 411 - Fall 2017

All the Gates

There are only 16 possible 2-input gates… Let’s examine all
of them. Some we already know, others are just silly.

15

How many of these gates
can be implemented using
a single CMOS gate?

Do we really need all of these gates?
Nope! Once we realize that we can describe all of
them using just AND, OR, and NOT

N-FETs can only
pull the ouput
to “0”, and only if
one or more of their
inputs is a “1”.

P-FETs can only
pull the ouput
to “1”, and only if
one or more of their
inputs is a “0”.

10/09/2017 Comp 411 - Fall 2017

Composing gates to build others

16

AND OR

Let’s start with a couple of basics, AND and OR. Each
can be constructed using a pair of CMOS gates, AND is
just NAND with an inverter, and OR is just NOR with an
inverted output.

Convention: In general, let’s avoid these last two cases.

When they are used, the resulting device is not STRICTLY following our STATIC DISCIPLINE (eg. Pass gates and storage devices).

Such devices are only QUASI-DIGITAL!

Convention: In general, let’s avoid these last two cases.

When they are used, the resulting device is not STRICTLY following our STATIC DISCIPLINE (eg. Pass gates and storage devices).

Such devices are only QUASI-DIGITAL!

These two gates are
particularly important.
Using them will allows us
to develop a systematic
approach for constructing
any combinational
function.

A
B

y A Y
B

10/09/2017 Comp 411 - Fall 2017

Composing arbitrary gates

17

B>A

A
B

y

XOR
A
B

Y

A
B

Y The TRICK is to OR the ANDs
of all input combinations
that generate an output of
“1”. You don’t need the OR gate
if only one input combination
results in a “1”.

You need Inverters to handle
input combinations involving
“0”s, ANDs, and ORs.

How many different gates do we really need?

We can always do it with 3 different types
of gates (AND, OR, INVERT), and sometimes
with 2, but, can we use fewer?

10/09/2017 Comp 411 - Fall 2017

One will do!

NANDs and NORs are UNIVERSAL!

18

A UNIVERSAL gate is one that can be used to implement
ANY COMBINATIONAL FUNCTION. There are many
UNIVERSAL gates, but not all gates are UNIVERSAL.

Q: What is a COMBINATIONAL FUNCTION?
A: Any function that can be written as a truth
table.

=
=

=

=
=

=

Ah!, but what if we want more than 2-inputs?

10/09/2017 Comp 411 - Fall 2017

Stupid Gate Tricks

Suppose we have some 2-input XOR gates:

And we want an N-input XOR:

19

A
0
0
1
1

B
0
1
0
1

C
0
1
1
0

tpd = 1 nS

 output = 1
 iff number
 of “1”s input is
 ODD (“PARITY”)

tpd = -- WORST CASE.N nS

Can we compute an N-input XOR faster?

10/09/2017 Comp 411 - Fall 2017

I Think That I Shall Never See

a Gate Lovely as a ...

20

21

22
2log2N

N-input TREE has O(______) levels...

Signal propagation takes O(_____) gate delays.

log N

log N

EVERY N-Input
Combinational function be
implemented using only
2-input gates? But, it’s
handy to have gates with
more than 2-inputs when
needed.

10/09/2017 Comp 411 - Fall 2017

A systematic Design Approach

21

Truth Table

1) Write the functional spec as a truth table
2) Write down a Boolean expression for

every ‘1’ in the output

3) Wire up the ideal gates, replace them with
equivalent realizable gates, call it a day,
and go home!

This approach will always give us logic
expressions in a particular form:

 SUM-OF-PRODUCTS

Y = (!C && !B && A) || (!C && B && A)
 || (C && B && !A) || (C && B && A)

-it’s systematic!
-it works!
-it’s easy!
-we get to go home!

10/09/2017 Comp 411 - Fall 2017

Straightforward Synthesis

We can implement

SUM-OF-PRODUCTS

with just 3 levels of logic.

INVERTERS/AND/OR

22

A
B
C

A
B
C

A
B
C

A
B
C

Y

10/09/2017 Comp 411 - Fall 2017

Other Useful Gate Combinations

23

NAND-NAND
C

A

B
Y≡

“Pushing and Cancelling Bubbles”

C

A

B
Y

NOR-NOR

≡
C

A

B
Y

C

A

B
Y

!(A || B) = !A && !B

!(A&&B) = !A || !B

DeMorgan’s Laws

10/09/2017 Comp 411 - Fall 2017

Other Useful CMOS Gates

24

AOI (AND-OR-INVERT)

OAI (OR-AND-INVERT)

Vdd

Vdd

≡

≡

A
B
C
D

A
B
C
D

Y

Y

Y

Y

A

C

D
B

A

B

C
D

AOI and OAI
structures can be
realized as a
single CMOS gate.
However, their
function is
equivalent to 3
levels of logic.

A
B
C
D

Y

An OAI’s DeMorgan
equivalent is usually
easier to think about.

10/09/2017 Comp 411 - Fall 2017

An Interesting 3-Input Gate

Based on C, select the A or B input to be copied to Y.

25

A

B
Y

C

If C is 1 then
copy B to Y,

otherwise copy
A to Y

2-input Multiplexer
B
C
A

Y

schematic

A

B

C

0

1 Gate
symbol

Truth Table

10/09/2017 Comp 411 - Fall 2017

MUX Compositions and Shortcuts

26

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
(implemented as a tree)

A
B
C
D
S

0
1
2
3

Y
0
1
0
1S

0
1
0
1S

A2
B2

A3
B3

Y0

S

0
1
0
1S

0
1
0
1S

A0
B0

A1
B1

Y
1

Y
2

Y
3

A 4-bit wide 2-input Mux

A0-3
B0-3

S

Y0-3

10/09/2017 Comp 411 - Fall 2017

MUX Function Synthesis

27

Consider implementation of some arbitrary Combinational
function, F(A,B,C)... using a MULTIPLEXER as the only
circuit element:

Mux Logic: An example “configurable”
logic element

0
1
2
3
4
5
6
7

A,B,C

Y

0
0
0
1
0
1
1
1

10/09/2017 Comp 411 - Fall 2017

MUX Logic tricks

28

We can apply certain optimizations to MUX Function synthesis

 - Largely by
 inspection or
 exhaustive search

 - N-input gate with an
 N-1 input MUX
 & one inverter

Desired Logic
Function

0
1
2
3

0
C
C
1

A,B

 Y There’s something
interesting going on

in those MUXes

10/09/2017 Comp 411 - Fall 2017

Next Time

Binary Circuits that:
ADD
SUBTRACT
SHIFT

29

