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Complementary Pullups and Pulldowns

1

We design components with complementary pullup 
and pulldown logic (i.e., the pulldown should be “on” 
when the pullup is “off” and vice versa).

pullup pulldown F(I1,…,In)
on off driven “1”
off on driven “0”
on on driven “X”
off off no connection

This is what the “C”
in CMOS stands for!

Convention: In general, 
let’s avoid these last 
two cases.

When they are used, the 
resulting device is not 
STRICTLY following our 
STATIC DISCIPLINE 
(eg. Pass gates and 
storage devices).

Such devices are only 
QUASI-DIGITAL!
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CMOS Complements

2

What a nice
VOH you have...

Thanks.  It runs
in the family...

On when A is “1” On when A is “0”

On when A is “1” and B is “1”: A && B

A

B
A B

On when A is “0”or B is “0”: (!A || !B)

On when A is “1” or B is “1”:  A || B

A

B
A B

On when A is “0” and B is “0”:  (!A && !B)

A A

Series N connections:

Parallel N connections:

Parallel P connections:

Series P connections:
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A Two-Input Logic Gate
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A

B

What function does
this gate compute?

A   B     C
0   0
0   1
1   0
1   1
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Here’s Another…

4

What function does
this gate compute?

A   B     C
0   0
0   1
1   0
1   1

A

B
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General CMOS Gate Recipe

5

Step 1.  Figure out pulldown network 
that does what you want (i.e the set 
of conditions where the output is ‘0’)
                 e.g., F = A && (B || C)

A

B C

Step 2.  Walk the hierarchy replacing 
nfets with pfets, series subnets with 
parallel subnets, and parallel subnets 
with series subnets

A
B

C

Step 3.  Combine pfet pullup 
network from Step 2 with nfet 
pulldown network from Step 1 to 
form fully-complementary CMOS 
gate.

But isn’t it
hard to wire
it all up?A B

C

A

B C
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One Last Exercise

Let’s construct a gate to compute:

F = A || (B && C) = NOT(OR(A,AND(B,C)))

6

Step 1: The pull-down network

Step 2: The complementary 
pull-up network

F
A B

C

1
1
1
0
0
0
0
0

VddA

B C
A B C F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

OBSERVATION: CMOS gates tend to 
be inverting! Precisely, one or more 
“0” inputs are necessary to generate 
a “1” output, and one or more “1” 
inputs are necessary to generate a 
“0” output. Why?
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Next time

Now that we can see what goes on inside of a single gate, 
we’ll next use several them to compose larger systems 
that compute other logic functions.

7
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Midterm practice
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Midterm practice
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Midterm Practice
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Enumerating and Composing Gates

● Combinational logic as/is 
truth tables

● Composing gates
● What gates do we have?
● What gates do we need?
● Making gates from others
● A systematic approach 

for implementing 
combinational logic

Midterm #1 on Friday

11
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Now can we design larger systems

We need to start somewhere – 
               usually with a functional specification

12

A
B YIf C is 1 then

copy B to Y,
otherwise copy

A to YC

If you are like most pragmatists you’d rather be given a table 
or formula than solve a puzzle to understand a function. The 
fact is, every combinational function can be expressed as a table. 

“Truth tables” are a concise description of the combinational 
system’s function, where an output is specified for *every* 
input combination. 

Argh… I’m tired of word games

Truth Table



10/09/2017 Comp 411 - Fall 2017 

Truth Tables to gates?

We want to build a computer!
So far we know how to

                               build a few CMOS gates
                               using MOSFET transistors

                                   (NAND, NOR, INVERTER)

   But we are missing AND,
                                     OR, and XOR

What gates can we build
                                      using CMOS?

13

A

B

Logic
 Gates

F = A xor B
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What GATES can we build?

Recall, we need to design our gates using a pull-up 
network of P-FETs and a pull-down network of N-FETs.

What gates can we
- build?
- define?

Let’s start by
considering only 
2-input gates. 

14

AND OR NAND NOR

How many possible 2-input gates are there?
KEY IDEA: As many as there are 2-input truth tables.
2-inputs → 22 = 4 rows, each with an output
4-outputs → 24 = 16 possible functions 
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All the Gates

There are only 16 possible 2-input gates… Let’s examine all 
of them. Some we already know, others are just silly.

15

How many of these gates 
can be implemented using 
a single CMOS gate?

Do we really need all of these gates?
Nope! Once we realize that we can describe all of 
them using just AND, OR, and NOT

N-FETs can only
pull the ouput
to “0”, and only if
one or more of their 
inputs is a “1”.

P-FETs can only
pull the ouput
to “1”, and only if
one or more of their 
inputs is a “0”.
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Composing gates to build others

16

AND OR

Let’s start with a couple of basics, AND and OR. Each 
can be constructed using a pair of CMOS gates, AND is 
just NAND with an inverter, and OR is just NOR with an 
inverted output.

Convention: In general, let’s avoid these last two cases.

When they are used, the resulting device is not STRICTLY following our STATIC DISCIPLINE (eg. Pass gates and storage devices).

Such devices are only QUASI-DIGITAL!

Convention: In general, let’s avoid these last two cases.

When they are used, the resulting device is not STRICTLY following our STATIC DISCIPLINE (eg. Pass gates and storage devices).

Such devices are only QUASI-DIGITAL!

These two gates are 
particularly important. 
Using them will allows us 
to develop a systematic 
approach for constructing 
any combinational 
function.

A
B

y A Y
B
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Composing arbitrary gates

17

B>A

A
B

y

XOR
A
B

Y

A
B

Y The TRICK is to OR the ANDs 
of all  input combinations 
that generate an output of 
“1”. You don’t need the OR gate 
if only one input combination 
results in a “1”.

You need Inverters to handle 
input combinations involving 
“0”s, ANDs, and ORs. 

How many different gates do we really need?

We can always do it with 3 different types 
of gates (AND, OR, INVERT), and sometimes 
with 2, but, can we use fewer?
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One will do!

NANDs and NORs are UNIVERSAL!

18

A UNIVERSAL gate is one that can be used to implement 
*ANY* COMBINATIONAL FUNCTION. There are many 
UNIVERSAL gates, but not all gates are UNIVERSAL.

Q: What is a COMBINATIONAL FUNCTION?
A: Any function that can be written as a truth 
table.

=
=

=

=
=

=

Ah!, but what if we want more than 2-inputs?
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Stupid Gate Tricks

Suppose we have some 2-input XOR gates:

And we want an N-input XOR:

19

A
0
0
1
1

B
0
1
0
1

C
0
1
1
0

tpd = 1 nS

  output = 1
  iff number 
  of “1”s input is
  ODD (“PARITY”)

tpd =          -- WORST CASE.N nS

Can we compute an N-input XOR faster?
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I Think That I Shall Never See

a Gate Lovely as a ...

20

21

22
2log2N

N-input TREE has O( ______ ) levels...

Signal propagation takes O( _____ ) gate delays.

log N

log N

EVERY N-Input
Combinational function be
implemented using only
2-input gates? But, it’s
handy to have gates with
more than 2-inputs when
needed.
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A systematic Design Approach
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Truth Table

1) Write the functional spec as a truth table
2) Write down a Boolean expression for 

every ‘1’ in the output

3) Wire up the ideal gates, replace them with 
equivalent realizable gates, call it a day, 
and go home!

This approach will always give us logic 
expressions in a particular form: 

     SUM-OF-PRODUCTS

Y = (!C && !B && A) || (!C && B && A)
   || (C && B && !A) || (C && B && A)

-it’s systematic!
-it works!
-it’s easy!
-we get to go home!
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Straightforward Synthesis

We can implement 

SUM-OF-PRODUCTS

with just 3 levels of logic.

INVERTERS/AND/OR

22

A
B
C

A
B
C

A
B
C

A
B
C

Y
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Other Useful Gate Combinations

23

NAND-NAND
C

A

B
Y≡

“Pushing and Cancelling Bubbles”

C

A

B
Y

NOR-NOR

≡
C

A

B
Y

C

A

B
Y

!(A || B) = !A && !B

!(A&&B) = !A || !B

DeMorgan’s Laws
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Other Useful CMOS Gates

24

AOI (AND-OR-INVERT)

OAI (OR-AND-INVERT)

Vdd

Vdd

≡

≡

A
B
C
D

A
B
C
D

Y

Y

Y

Y

A

C

D
B

A

B

C
D

AOI and OAI 
structures can be 
realized as a 
single CMOS gate. 
However, their 
function is 
equivalent to 3 
levels of logic.

A
B
C
D

Y

An OAI’s  DeMorgan 
equivalent is usually 
easier to think about.
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An Interesting 3-Input Gate

Based on C, select the A or B input to be copied to Y.

25

A

B
Y

C

If C is 1 then
copy B to Y,

otherwise copy
A to Y

2-input Multiplexer
B
C
A

Y

schematic

A

B

C

0

1 Gate
symbol

Truth Table
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MUX Compositions and Shortcuts

26

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0    S1

A 4-input Mux
(implemented as a tree)

A
B
C
D
S

0
1
2
3

Y
0
1
0
1S

0
1
0
1S

A2
B2

A3
B3

Y0

S

0
1
0
1S

0
1
0
1S

A0
B0

A1
B1

Y
1

Y
2

Y
3

A 4-bit wide 2-input Mux

A0-3
B0-3

S

Y0-3
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MUX Function Synthesis

27

Consider implementation of some arbitrary Combinational 
function, F(A,B,C)... using a MULTIPLEXER as the only 
circuit element:

Mux Logic: An example “configurable” 
logic element

0
1
2
3
4
5
6
7

A,B,C

Y

0
0
0
1
0
1
1
1



10/09/2017 Comp 411 - Fall 2017 

MUX Logic tricks

28

We can apply certain optimizations to MUX Function synthesis

                            - Largely by
                                        inspection or
                                        exhaustive search

                                 - N-input gate with an 
                                         N-1 input MUX 
                                         & one inverter

Desired Logic
Function

0
1
2
3

0
C
C
1

A,B

 Y There’s something
interesting going on

in those MUXes
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Next Time

Binary Circuits that:
ADD
SUBTRACT
SHIFT

29


