COMPLEMENTARY PULLUPS AND PULLDOWNS

This is what the " C " in CMOS stands for! We design components with complementary pullup and pulldown logic (ie., the pulldown should be "on" when the pullup is "off" and vice versa).

Such devices are only QUASI-DIGITALI

EMOS COMPLEMENTS
A

On when A is "I"

On when A is "I" and B is " \mid ": A \&\& $B \quad O_{n}$ when A is " 0 "or B is " 0 ": (IA || I B)

Parallel N connections: What a nice

A

\square
\square

Thanks. It runs in the family..

On when A is " 0 "

Parallel P connections:

On when A is " 0 " and B is " 0 ": (IA \&\&! B)

a two-Input logic cate

What function does this gate compute?

HERE'S ANDTHER..

What function does this gate compute?

GENERAL EMOS GATE RECIPE

Step I. Figure out pulldown network that does what you want (ie the set of conditions where the output is ' O ')

$$
\text { egg. } F=\bar{A} \& \&(B \| C)
$$

Step 2. Walk the hierarchy replacing nets with pets, series subnets with parallel subnets, and parallel subnets with series subnets

Step 3. Combine pfet pullup network from Step 2 with nfet pulldown network from step I to form fully-complementary CMOS gate.

But isn't it hard to wire it all up?

ONE LAST EXERCISE

Let's construct a gate to compute:

$$
F=\overline{A \|(B \& \& C)}=\operatorname{NOT}(\operatorname{OR}(A, A N D(B, C)))
$$

A	B	C	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Step 1: The pull-down network
Step 2: The complementary pull-up network

OBSERVATION: CMOS gates tend to be inverting! Precisely, one or more " 0 " inputs are necessary to generate a "1" output, and one or more "1" inputs are necessary to generate a " 0 " output. Why?

NEXT TIME

Now that we can see what goes on inside of a single gate, we'll next use several them to compose larger systems that compute other logic functions.

MIDTERM PRACTICE

Which of the following ARM instructions might be encoded as: $0 \times 03 A 01008$?Idreq r1,[r3,\#10]Idreq r1,xbxeq rybleq mainmove r1,\#x

MIDTERM PRACTICE

Shown below is a complete set of double-six domino tiles.
Suppose someone tells you that a tile they are holding has a 5 spot. How many bits of information are conveyed?
$\log 2(28 / 5)$$\log 2(28 / 7)$$\log 2(28 / 8)$$\log 2(28 / 9)$None of the above

Midterm practice

If an ASCII character array containing "EDIT" appears in a word of memory as 0×54494445, what can you infer?The computer is using a convention where all strings are aligned to word boundariesThe letter " E " is encoded in ascii as 01010100The machine is byte addressableThe machine uses little-endian addressingAll of the above
enumerating and composing gates

- Combinational logic as/is truth tables
- Composing gates
- What gates do we have?
- What gates do we need?
- Making gates from others
- A systematic approach for implementing combinational logic
Midterm \# on Friday

NOW LAN WE DESIGN LARGER SYSTEMS

We need to start somewhere usually with a functional specification

If you are like most pragmatists you'd rather be given a table or formula than solve a puzzle to understand a function. The fact is, every combinational function can be expressed as a table.
"Truth tables" are a concise description of the combinational system's function, where an output is specified for *every* input combination. Truth Table

C	B	A	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

TRUTH TABLES TO GATES?

We want to build a computer!

so far we know how to build a few CMOS gates using MOSFET transistors
(NAND, NOR, INVERTER)
But we are missing AND, OR, and XOR

What gates can we build using CMOS?

WHAT GATES CAN WE BUILD?

Recall, we need to design our gates using a pull-up network of P-FETs and a pull-down network of N-FETs.

How many possible 2-input gates are there?
KEY IDEA: As many as there are 2 -input truth tables.
2 -inputs $\rightarrow 2^{2}=4$ rows, each with an output
4-outputs $\rightarrow 2^{4}=16$ possible functions

all the cates

There are only 16 possible 2-input gates... Let's examine all of them. Some we already know, others are just silly.

Do we really need all of these gates?
Nope! Once we realize that we can describe all of them using just AND, OR, and NOT

COMPOSING GATES TO BUILD OTHERS

Let's start with a couple of basics, AND and OR. Each can be constructed using a pair of CMOS gates, AND is just NAND with an inverter, and OR is just NOR with an inverted output.

COMPOSING ARBITRARY GATES

How many different gates do we really need?
We can always do it with 3 different types of gates (AND, OR, INVERT), and sometimes

The TRICK is to OR the ANDs of all input combinations
 that generate an output of "I". You don't need the OR gate if only one input combination results in a "I".

You need Inverters to handle input combinations involving " 0 " s , ANDs, and ORs. with 2 , but, can we use fewer?

ONE WILL DO!

NANDs and NORs are UNIVERSAL!

A UNIVERSAL gate is one that can be used to implement *AN * COMBINATIONAL FUNCTION. There are many UNIVERSAL gates, but not all gates are UNIVERSAL

Q: What is a COMBINATIONAL FUNCTION? A: Any function that can be written as a truth table.

Ah, but what if we want more than 2-inputs?

stupid Gate tricks

Suppose we have some 2-input XOR gates:

$$
t_{p d}=1 \mathrm{nS}
$$

And we want an N-input XOR:

output $=1$ iff number of 'l's input is ODD ('PARITY')

$$
t_{p d}=N n S \quad-- \text { WORST CASE. }
$$

Can we compute an N-input XOR faster?

I Think That I shall Never See
a cate lovely as a ...

N-input TREE has of \qquad - $\log N$) levels...

EVERY N-Input Combinational function be implemented using only 2 -input gates? But, it's handy to have gates with more than 2-inputs when needed.
signal propagation takes o($\log \mathbf{N}_{\text {_ }}$) gate delays.

A SYSTEMATIC DESIGN APPROACH

Truth Table

C	B	A	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

-it's systematic!
-it works!
-it's easy!
-we get to go home!

1) Write the functional spec as a truth table
2) Write down a Boolean expression for every ' 1 " in the output

$$
\begin{aligned}
y= & (!C \&!B \& \& A) \|(C \& \& B \& \& A) \\
& \|(C \& \& B \& \& A)\|(C \& \& B \& A)
\end{aligned}
$$

3) Wire up the ideal gates, replace them with equivalent realizable gates, call it a day, and go home!

This approach will always give us logic expressions in a particular form: SUM-OF-PRODUCTS

STRAIGHTFORWARD SYNTHESIS

We can implement
SUM-OF-PRODUCTS with just 3 levels of logic.

INVERTERS/AND/OR

OTHER USEFUL GATE COMBINATIONS

OTHER USEFUL CMOS GATES

AOI (AND-OR-INVERT)

OAI (OR-AND-INVERT)

An OAI's DeMorgan easier to think about.

\square

D

AOI and OAI
structures can be realized as a single CMOS gate. However, their function is equivalent to 3 levels of logic.

an Interesting 3-Input cate

Based on C, select the A or B input to be copied to y.

schematic

Truth Table

C	B	A	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

muX COMPOSITIONS AND SHORTCUTS

A 4-bit wide 2-input Mux
A 4-input Mux
(implemented as a tree)

MUX FUNCTION SYNTHESIS

Consider implementation of some arbitrary Combinational function $F(A, B, C)$... using a MULTIPLEXER as the only circuit element.

Mux Logic: An example "configurable"

MUX LOGIC TRICKS

We can apply certain optimizations to MuX Function synthesis

Desired Logic Function				
A	B	c	y	
0	0	0	0	$0-0$
0	0	1	$0)$	$c-1$
0	1	0	0	C-2
0	1	1	1	$1-3$
1	0	0	0	A B
1	0	1	1)	A, B
1	1	0	1)	
1	1	1	1	

- Largely by
inspection or
exhaustive search

- N-input gate with an $\mathrm{N}-\mathrm{i}$ input MuX \& one inverter

NEXT TIME

Binary Circuits that: ADD SUBTRACT SHIFT

