—_\
STATIC AND DYNAMIC LIBRARIES L]

—

e LIBRARIEES are commonly used routines stored as a concatenation of
“Olajec+ Fies" A global c;ymloo\ table is maintained for the entire library
with el"l'l'r‘y Poirﬂ'e For each routine.

e Wheh a routine in a LIBRARY is referenced on an acssembly module, the
routine's address is resolved Iax/ the LINKER, and the appropriate code is
added to the executdble. This sort of Iinkina is called STATIC |inl<in3.

e Many programs use common libraries. It is wasteful of both memot-y ond
disk. space to include the same code in multiple executables. The modern
alternative to STATIC linkina is to dlow the LOADER and THE PROGRAM
ITSELF to resolve the addresses of libraries routines. This form of lining
is called DYNAMIC linking (ex. dI.

I0/02/2.017 ComP 41 - Fall 2017

DynamicaLLy LINKED LIBRARIES

e C cdl to Iilor‘ar‘y Function:

printf(“sqr[%d] = %d\n”, x, y); How does
o Assembly code d)’"c“';i‘ linking
mov RO, #1 works
mov R1,ctrlstring /
1dr R2, x A
1dr R3,y

2

mov IP stdio
- -- Why are we loading
mov LR y Pc / "'he PC 'ﬁ"o
1dr PC,[IP,#16] , memory lor:a:ion
rather +han
branching?

I0/02/2.017 Comp 41 - Fall 2017

DynamicaLLy LINKED LIBRARIES

+ Lazy address resolution:
sysload: stmfd sp!,[r0-r10,1r]

Because, the
entry points to
dynamic library
routines are
stored in a
TABLE. And the
contents of this
{able are loaded

on an "as needed”

basis! \

)

I0/02-/2.017

: check if stdio module

; is loaded,

if not load it

; backpatch jump table

mov
mov
str
mov
str
mov
str
mov
str
mov
str

r1,__stdio__
ro,dfopen
ro,[r1]
ro,dfclose
ro,[r1,#4]
ro,dfputc
ro,[r1,#8]
ro,dfgetc
ro, [r1,#12]
ro,dfprintf
ro,[r1,#16]

\

Comp 41 - Fall 2017

Before any call is made -I-o a]
procedure in “stdiedll”

.globl _ stdio_ :

fopen:
fclose:
fgetc:
fputc:

fprintf:

__ s tdi o_ :

.word
.word
.word
.word
.word

sysload
sysload
sysload
sysload
sysload

After the first call is made
o any procedure in “stdiodll”

.globl _ stdio_ :
__stdio__ :

fopen:
fclose:
fgetc:
fputc:

fprintf:

dfopen
dclose
dfgetc
dfputc
dprint

MODERN LANGVAGES

Intermediate ‘object code \anguage“

High-level, portable (architecture
independent) program description Java program

PORTABLE mnemenic program . <0
description with symbolic memory IM by‘recodes L'brar)’ eowhnes

references /L ‘

An application that EMULATES a

virtual machine. Can be written < Iﬂ'l’erPre'l’er 5
for any Instruction Set Archidecture. _—

In the end, machine language

instructions must be executed for

each JMM bytecode

I0/02/2.017 Comp 41 - Fall 2017

MODERN LANGVAGES

Intermediate ‘object code \anguage“

High-level, portable (architecture
independent) program description Java program

+

PORTABLE mnemenic program . <0
description with symbolic memory IM by‘recodes L'brar)’ eowhnes

rences

While interpreting on the first pass
the JIT keeps a copy of the machine
language instructions used.

0

Future references access machine TOCIOyJS JlTs are nearly as
!2;,"9:‘,?9;25,’,17. avetdng further fast as a nalive compiled code.

Machine code

10/02-/2-017 Comp 41 - Fall 2017

p—_ %
ASSEMBLY? REALLY? L1

—

® In the early alays compilers were dumb
o literal line-by-line generation of assembly code of 'C' source

o This was eblicient in terms ol S/W development time
m C is portable, ISA independent, write once- run anywhere
m C is easier to read and understand
m Detais of stack alocation and memory management are hidden

o However, a Savvy progrommer could nearly always generate
code that would execute fFaster

® Enter the modern era of Compilers
o Focused on oPﬁmized code—aer\er‘aﬁor\
o Captured the common tricks that low-level programmers used
o Meticulous Iaookkeepir\ﬂ (ie. will | ever use this varidble aﬂain?)
o It is hard for even the best hacker to improve on code

ﬁeneraJred by ﬁood optimizing compiers
I0/02-/2.017 Comp 4l - Fall 2017 G

NEXT TIME

e Compiler code
optimization

e We look deeper into the
Rabbit hole

I0/02/2.017 Comp 41 - Fall 2017

WHAT WOVLD A COMPILER DO?

Fnclud <STaid.ng
it mgin(veid)

L

MICE TRY.

int count

for ({ﬂuh‘i‘ =13 count<=500;C0u ni+ q-]

prinitf ("I witl nat Throw paper dirplanes n class,”); ,

i
—
—

Today we'll look at the ac;csemlaly code that compiler's
ﬂener'aJre...

10/02-/2-017 Comp 41 - Fall 2017

CODE GENERATION

Example C code:

int array[10];
int total;

int main() {

int i;

total = 0;

for (1 = 0; i < 10; i++) {
array[i] = i;

total = total + 1i;

10/02-/2-017 Comp 41 - Fall 2017

CODE WE MIGHT WRITE

.word 0x03fffffc, main

array: .space 10

total: .space 1

main: ; int main() {
sub sp, sp, #4 ; int i;
mov r0,#0
str r0,total ; total = 0;
str r0, [sp] ; for (i = 0; i < 10; i++) {
b _Lo02

_LO1:
mov rl,#array
str r0,[rl,x0,1s1 #2] ; array[i] = i;
ldr rl,total
add rl,rl,x0
str rl,total ; total = total + i;
add r0,r0,#1
str r0, [sp]

_Lo02: 98 that's net se bad
cmp r0,#10 /
blt _Lo1 ; }]
add sp, sp, #4

* bx 1r

10/02-/2-017 Comp 41 - Fall 2017 10

)

—

=

AN ONLINE ARM? COMPILER 141}

Available at: h++,p://csbio.unc.edu/mcmillan/inc/ex.'py.?r'un=arm

UNC miniARM C-compiler V 0.1

Compile Optimize

I0/02/2.017 Comp 41 - Fall 2017

VNOPTIMIZED COMPILER OVTPVT

.word 0x03fffffc, main _"p Why is this
array: .space 10 /code so bad?
total: .space 1
.global main Because it generated for debugging.
main: Essentially, each line is +ranslated directly.
str fp, [sp, #-4]!
add fp, sp, #0
b S; S; 412 175, not a good day.
ldr r3, 14 /
mov r2, #0]
str r2, [r3, #0]
mov r3, #0
str r3, [fp, #-8]
b L2
_L3: _L2:
1ldr r3, L4+4 1dr r3, [fp, #-8]
ldr r2, [fp, #-8] cmp r3, #9
1dr rl, [fp, #-8] ble _L3
str rl, [r3, r2, asl #2] mov r0, r3
1dr r3, L4 add sp, fp, #0
1dr r2, [r3, #0] ldmfd sp!, {fp}
ldr r3, [fp, #-8] bx 1r
add r2, r2, r3 _L5:
1ldr r3, L4 _L4:
str r2, [r3, #0] .word total
1dr r3, [fp, #-8] .word array
add r3, r3, #1
str r3, [fp, #-8]

10/02-/2-017 Comp 41 - Fall 2017 12

OPTIMIZED CODE

.word 0x03fffffc, main
.global main

main:
ldr r2, L4
mov r3, #0
It even relaid out TL2:
the variables so str r3, [r2, #4]!
that all writes are ~ &
sequential, T add r3, r3, #1
cmp r3, #10
bne _L2
mov r2, #45
ldr r3, L4+4
str r2, [x3, #0]
* bx 1r
_L5:
_L4:
.word array-4
.word total 4S, best ever!
total: .space 1 /
array: .space 10 2

I0/02/2.017 Comp 41 - Fall 2017

NEXT TIME

We look. into the hardware

I0/02-/2.017

o
HoNoL

O1TY R
:analk
10 110400
OHIpILoNt
1otoon !t
Hononpw\
O OO MO
HNOB e IoY
oA oo
/2101001101101
7001010 iy
00”()6010!“(]|0||a[t\
“h mmo“mum\“

/!
7 ',‘z,"’,’momnouon

Otip |Oﬁ
,”}”t}rfr??)';';%:lo
Moratipgno!
ONoion 10"
o100 ﬂ”(ﬂo
10Ot oot
V\are0ion IU”O”
1001H10) 0110
1o11010 1 {pph
ottt 0! Q
011011 100y

11y, L
Jperron) 'i'iﬂﬁl

. P

ComP 41 - Fall 2017

