
10/02/2017 Comp 411 - Fall 2017

Static and Dynamic Libraries

● LIBRARIES are commonly used routines stored as a concatenation of
“Object files”. A global symbol table is maintained for the entire library
with entry points for each routine.

● When a routine in a LIBRARY is referenced by an assembly module, the
routine’s address is resolved by the LINKER, and the appropriate code is
added to the executable. This sort of linking is called STATIC linking.

● Many programs use common libraries. It is wasteful of both memory and
disk space to include the same code in multiple executables. The modern
alternative to STATIC linking is to allow the LOADER and THE PROGRAM
ITSELF to resolve the addresses of libraries routines. This form of lining
is called DYNAMIC linking (e.x. .dll).

1

10/02/2017 Comp 411 - Fall 2017

Dynamically Linked Libraries

● C call to library function:

● Assembly code

2

printf(“sqr[%d] = %d\n”, x, y);

 mov R0,#1
 mov R1,ctrlstring
 ldr R2,x
 ldr R3,y
 mov IP,__stdio__
 mov LR,PC
 ldr PC,[IP,#16]

How does
dynamic linking
work?

Why are we loading
the PC from a
memory location
rather than
branching?

10/02/2017 Comp 411 - Fall 2017

Dynamically Linked Libraries

3

.globl __stdio__:
__stdio__:
fopen: .word sysload
fclose: .word sysload
fgetc: .word sysload
fputc: .word sysload
fprintf: .word sysload

Before any call is made to a
procedure in “stdio.dll”

.globl __stdio__:
__stdio__:
fopen: dfopen
fclose: dclose
fgetc: dfgetc
fputc: dfputc
fprintf: dprintf

After the first call is made
to any procedure in “stdio.dll”

Because, the
entry points to
dynamic library
routines are
stored in a
TABLE. And the
contents of this
table are loaded
on an “as needed”
basis!

 sysload: stmfd sp!,[r0-r10,lr]
.
.
; check if stdio module
; is loaded, if not load it
.
.
; backpatch jump table
mov r1,__stdio__
mov r0,dfopen
str r0,[r1]
mov r0,dfclose
str r0,[r1,#4]
mov r0,dfputc
str r0,[r1,#8]
mov r0,dfgetc
str r0,[r1,#12]
mov r0,dfprintf
str r0,[r1,#16]

• Lazy address resolution:

10/02/2017 Comp 411 - Fall 2017

Modern Languages

Intermediate “object code language”

4

Java program

Compiler

JVM bytecodes

Interpreter

“Library Routines”

High-level, portable (architecture
independent) program description

PORTABLE mnemonic program
description with symbolic memory
references

An application that EMULATES a
virtual machine. Can be written
for any Instruction Set Architecture.
In the end, machine language
instructions must be executed for
each JVM bytecode

10/02/2017 Comp 411 - Fall 2017

Modern Languages

Intermediate “object code language”

5

Java program

Compiler

JVM bytecodes

JIT Complier

“Library Routines”

High-level, portable (architecture
independent) program description

PORTABLE mnemonic program
description with symbolic memory
references

While interpreting on the first pass
the JIT keeps a copy of the machine
language instructions used.
Future references access machine
language code, avoiding further
interpretation

Machine code

Today’s JITs are nearly as
fast as a native compiled code.

10/02/2017 Comp 411 - Fall 2017

Assembly? Really?

● In the early days compilers were dumb
○ literal line-by-line generation of assembly code of “C” source
○ This was efficient in terms of S/W development time

■ C is portable, ISA independent, write once– run anywhere
■ C is easier to read and understand
■ Details of stack allocation and memory management are hidden

○ However, a savvy programmer could nearly always generate
code that would execute faster

● Enter the modern era of Compilers
○ Focused on optimized code-generation
○ Captured the common tricks that low-level programmers used
○ Meticulous bookkeeping (i.e. will I ever use this variable again?)
○ It is hard for even the best hacker to improve on code

generated by good optimizing compilers
6

10/02/2017 Comp 411 - Fall 2017

Next Time

● Compiler code
optimization

● We look deeper into the
Rabbit hole

7

10/02/2017 Comp 411 - Fall 2017

What would a compiler do?

Today we’ll look at the assembly code that compiler’s
generate...

8

10/02/2017 Comp 411 - Fall 2017

Code generation

Example C code:

9

int array[10];
int total;

int main() {
 int i;

 total = 0;
 for (i = 0; i < 10; i++) {
 array[i] = i;
 total = total + i;
 }
}

10/02/2017 Comp 411 - Fall 2017

Code we might write

10

 .word 0x03fffffc, main

array: .space 10
total: .space 1

main: ; int main() {
 sub sp,sp,#4 ; int i;
 mov r0,#0
 str r0,total ; total = 0;
 str r0,[sp] ; for (i = 0; i < 10; i++) {
 b _L02
_L01:
 mov r1,#array
 str r0,[r1,r0,lsl #2] ; array[i] = i;
 ldr r1,total
 add r1,r1,r0
 str r1,total ; total = total + i;
 add r0,r0,#1
 str r0,[sp]
_L02:
 cmp r0,#10
 blt _L01 ; }
 add sp,sp,#4
* bx lr

98 that’s not so bad

10/02/2017 Comp 411 - Fall 2017

An online ARM7 Compiler

Available at: http://csbio.unc.edu/mcmillan/index.py?run=arm

11

10/02/2017 Comp 411 - Fall 2017

Unoptimized Compiler Output

12

.word 0x03fffffc, main
array: .space 10
total: .space 1
 .global main
main:
 str fp, [sp, #-4]!
 add fp, sp, #0
 sub sp, sp, #12
 ldr r3, _L4
 mov r2, #0
 str r2, [r3, #0]
 mov r3, #0
 str r3, [fp, #-8]
 b _L2
_L3:
 ldr r3, _L4+4
 ldr r2, [fp, #-8]
 ldr r1, [fp, #-8]
 str r1, [r3, r2, asl #2]
 ldr r3, _L4
 ldr r2, [r3, #0]
 ldr r3, [fp, #-8]
 add r2, r2, r3
 ldr r3, _L4
 str r2, [r3, #0]
 ldr r3, [fp, #-8]
 add r3, r3, #1
 str r3, [fp, #-8]

 _L2:
 ldr r3, [fp, #-8]
 cmp r3, #9
 ble _L3
 mov r0, r3
 add sp, fp, #0
 ldmfd sp!, {fp}
 bx lr
_L5:
_L4:
 .word total
 .word array

Why is this
code so bad?

Because it generated for debugging.
Essentially, each line is translated directly.

175, not a good day.

10/02/2017 Comp 411 - Fall 2017

Optimized Code

13

 .word 0x03fffffc, main
 .global main
main:
 ldr r2, _L4
 mov r3, #0
_L2:
 str r3, [r2, #4]!
 add r3, r3, #1
 cmp r3, #10
 bne _L2
 mov r2, #45
 ldr r3, _L4+4
 str r2, [r3, #0]
* bx lr
_L5:
_L4:
 .word array-4
 .word total
total: .space 1
array: .space 10

45, best ever!

It even relaid out
the variables so
that all writes are
sequential,

10/02/2017 Comp 411 - Fall 2017

Next Time

We look into the hardware

14

