€ ARRAYS

The C source code

int hist[100];
int score = 92;

hist[score] += 1; score.

might translate to:

hist: .space 100
score: .word 92
mov R3,#hist
ldr R2,score
ldr R1l, [R3,R2,LSL #2]
add R1,R1,#1
str R1l, [R3,R2,LSL #2]

92

hist:

Aclclress:
CONSTANT base address + scaled VARTABLE offse}

09/271/2017 Comp 41 - Fall 2017

€ "“srevers”

. C "structs' are \i@h’rweiﬁth ‘container objec’rcs" -
objects with members, but no methods.

. There is special 'Java-like' syntox For accessing
particular members: variablemember (ac+ually,
Java's dot operator " is borrowed from C)

- You cah also have PoinJrer‘s to structs.

C Pr'ovioles an new operator to access them:
poin+er\/ariable->member struct Point {

int x, y;
} P1, P2, *p;
This simplities the alternative syntax: k= 157,
(fpoim‘er‘\/ar'iable)member -
p = &P1l;
p->y = 123;

09/27/2017 Comp 41 - Fall 2017

STRUCTS (N ACTION

struct Point {
int x, y;

} P1, P2, xp;

P1.x = 157;

p = &P1;

p->y = 123;

might translate to:

P1: .space 8
P2: .space 8
p: .space 4

mov R1, #P1

mov RO, #157
str RO, [R1,#0]
str R1, #p

1dr R2,#p

mov RO, #123
str RO, [R2,#4]

09/27/2.017

Address:
VARTABLE base address + CONSTANT offset

p &P/1
P2ly
P2: P2[x
P1ly
: P1.x = 157 P1: P1|x
7 p = &P1
; p->y = 123

COWP‘MW-FdllOW

€ “IF” T6 ASSEMBLY TRANSLATION

C code:

if (expr) {
STUFF
}

C code:

if (expr) {
STUFF1

} else {
STUFF2

}

09/27/2.017

ARM assembly:

(compute expr)
beq Lendif

(compile STUFF)

Lendif:

Note: the branches used in

assembly “SKIP* code blocks ™ (Y
rather than cause them o be
executed. This often resulls

in a complement fest!

Comp 41 - Fall 2017

ARM assembly:

(compute expr)
beq Lelse

(compile STUFF1)
b Lendif
Lelse:

(compile STUFF2)

Lendif:

C "WHILE” LooPs

C code:

while (expr)
STUFF
}

{

Assembly:
Lwhile:
(compute expr)
beq Lendw
(compile STUFF)
b Lwhile
Lendw:

Alternate
Assembly:

b Ltest

Lwhile:
(compile STUFF)

Ltest:

(compute expr)
bne Lwhile

Lendw:

Compilers spend a lot of time optimizing in and around loops.
- movina all Poc;c;ible comPquaJrions outside of IooPc;

- unroling loops to reduce Ioranchina overhead

- GimPIiPyinﬂ expressions that depend on ‘loop variables'

09/27/2.017

Comp 41 - Fall 2017

€ "FOR” LOOPS

Most high-level lanauajes Pr'ovicle loop constructs
that establish and update an iterator, which
controls the loop's behavior

for (initialization; conditional; afterthought) {

STUFF;
}
For loops are the most
commeonly used form of
Assembl ¥; Heration found programming
(compile initialization) langucges.
Lfor: Their advantage is readabiliy.
r — They bring together the three
(compute conditional) n N A i
beq Lendfor ? § iteration, seHsi':g an initial
. value, establishing a
(CO mp I_I e STUF F) termination condition, and giving
(compile afterthought) an update rule.
B Lfor Ahhh, but one other
Lendfor: :l':el:la'l'lon forms there

S
09/27/2017 Comp 41l - Fall 2017 M

NEXT TIME

. The details behind assemblers
- 2-pass and -pass assemlaly
. Linkers and dynamic libraries

oA
_vexy

09/27/2017 Comp 41 - Fall 2017

ASSEMBLERS AND LINKERS

Long, long, time ago, I can still remember
How mnemonics used +o make me smile..
Cause I knew with just those opcode names
that I could play some assembly games

and T'd be hacking kernels in just awhile.
But Comp HIl made me shiver,

With every new lecture that was delivered,
There was bad news at the doorstep,

I just didn't get the problem sets.

T can't remember if I cried,

When inspecting my stack frame’s insides,
All T know is that it crushed my pride,

On the day the joy of software died.

And I was singing...

09/27/2.017 Comp 41 - Fall 2017

When I find my code in tons of trouble,
Friends and colleagues come to me,
Speaking words of wisdom:
"Wr;+e in C"

ROVTES FROM PROGRAMS TO BITS
Traditional Compilation

High-level, portable
(archiHecture independent)

program description

Architecture dependent
mnemenic program
description with symbolic

memory references

Machine lanquage
with symbolic memory

references

09/27/2.017

C or C++ program

< Compiler

‘Library Routines'

Assembly Code

‘Executadble’

Assembler

v

‘Object Code'

"Memor'y‘l

Comp 41 - Fall 2017

A collection of precompiled
object code modules

Machine lanquage
with all memory references

resolved

Program and data bits
loaded into memory

How AN ASSEMBLER WoORKS

Three major‘ componenJrc:» of asc;emlaly

D) Allocating and initializing data storage

2) Conversion of mnemonics to Ioinar'y instructions

3) Resolving addresses

array:
total:

main:

loop:

*halt:

09/27/2.017

.word
.Space
.word

mov
mov
mov
ldr
b

add
str
add
add
cmp
blt
str
b

__Sois thi

0x03fffffc, [main |- s
11 FTE
0

__Need 1o fiqure out this
r1,#array.-$)mmedia-l»esvalue
r2,#0
r3,#1 __This one is a PC-relative offset

tal ‘38 + —Tisisa forward reference
ro,ro,r3

r3,[r1,r2,1sl #2]

r3, r3,r3

r2,r2,#1

r2, #11

loop __This offset is completely different

ro, total-—" 4han the one a few instruchions agqo
halt ‘“8)

Comp 41 - Fall 2017

RESOLVING ADDRESSES-)°T PASS

“Old—e’ryle" 2-pass assembler approoch

Address | Machine code Assembly code
a BxB3FFFFFC .word Bxa3fffffc, main
4 BxBBaBBBE8e
8 array: .space 11
52 BxBBBBBEEA total: .word a
56 BxE3AB1666 main: mov ri,#array
68 BxE3AB2B88 mov r2,#a
64 BxE3AB3681 mov r3, #1
68 BxES1FBE88 ldr ré, total
72 BxEABBBBEBE b test
76 BxERB8BBE83 loop: add ré, r8, r3
8o BxE7813182 str r3,[r1,r2,181 #2]
B4 BxEBB336083 add r3,r3,r3
88 BxE28226881 add rz, rz,#1
92 BxE35208668 test: cmp r2,#11
96 BxBABBBBES blt loop
188 BxESBFBE88 str ré, total
184 BxEABBBBEBA #halt: b halt
09/27/2017 Comp 4 - Fal 2017

In the First pass, data and
instructions are encoded

ond ac;c;ianed offsets,
while a symbol table is

constructed.

Unresolved address

references are set to O

Symbol Address
array 8
total 52
main 56
loop 76
test 92
halt 1684

RESOLVING ADDRESSES (N 2"° pASS

"OId—eryle“ 2-pass assembler approoch

Ih the First pass, data and
instructions are encoded
and ossigned ofFsets,
while a symbol table is
constructed.

Unresolved address
references are set to O

Symbol Address

loop 76

\\--“~ array 8
= total 52
~ main 56

Address | Machine code Assembly code

5] BxB3FFFFFC .word BxB3fffffc, main
] BxBb6B0838
8 array: .space 11 ‘—--\\\\
52 BxBeBBBERA total: .word 5]

56 AxE3AB1008 €T main: mov ri,#array

68 BxE3AB26888 mov r2,#e

64 BxE3AB3661 mov r3, #1

b8 BxES1FGB18 TaT 9 tal

72 BxEABBBOB3 — test

76 BxEBB8BBB83 loop: add re, m\ri

88 BxE7813182 str r3, [r1,X2,

B4 BxEBB336883 add r3,r3, rd

88 BxEZ28226881 add r2,r2,#1

92 BxE352B86088 test: cmp r2,#11

96 BxBAFFFFF9 blt

188 BxESBFBB38 = e, total

184 BxEAFFFFFE A & *halt: b halt

\
09/27/2017 Comp 4 - Fal 2017

test 92
= halt 184

MODERN)-PASS ASSEMBLER

Modern assemblers keep more infFormation in their symbol
table which adllows them to resolve addresses in a single pass.
e Knowh addresses (backward references) are immediaJrer resolved.

e Unkhowh addresses (Forward references) are 'back-Filed' once they
are resolved.

State of the symbol Symbol Address | Resolved? Reference list
table after the array 8 y 56
instruction ~
str 3, [rlr2)sl #2] 4~ tota 1 52 y 68
is assembled T main 56 y 4
loop 76 y ?
test 7 n 72

09/27/2017 Comp 41 - Fall 2017 3

ROLE OF A LINKER

Some aspects ofF address resolution cannot be handied loy the assembler alone.

. References to data or routines in other object modules
2. The layout ofF all segments in memory

3. Support for REUSABLE code modules

4. Support for RELOCATABLE code modules

This Final step of resolution is the job of a LINKER

f f
Soé;:ce —p Assembler —P Obi;& \
f f
%j _Obé'l-\ : Executable
file —P Assembler —P A —P Linker File
))
So\frce —p Assembler —P Ob:ec-l- T
file ile
e
09/27/2017 Comp 4l - Fall 2017 14

—_\
STATIC AND DYNAMIC LIBRARIES L]

—

e LIBRARIES are commonly used routines stored as a concatenation of
“Olajec+ Fies" A global c;ymloo\ table is maintained for the entire library
with el"l'l'r‘y Poirﬂ'e For each routine.

e Wheh a routine in a LIBRARY is referenced on an acssembly module, the
routine's address is resolved Iax/ the LINKER, and the appropriate code is
added to the executdble. This sort of Iinkina is called STATIC |inl<in3.

e Many programs use common libraries. It is wasteful of both memot-y ond
disk. space to include the same code in multiple executables. The modern
alternative to STATIC linkina is to dlow the LOADER and THE PROGRAM
ITSELF to resolve the addresses of libraries routines. This form of lining
is called DYNAMIC linking (ex. dI.

09/271/2017 ComP 41 - Fall 2017 5

DynamicaLLy LINKED LIBRARIES

e C cdl to Iilor‘ar‘y Function:

printf(“sqr[%d] = %d\n”, x, y); How does
o Assembly code d)’"c“';i‘ linking
mov RO, #1 works
mov R1,ctrlstring /
1dr R2, x A
1dr R3,y

2

mov IP stdio
- -- Why are we loading
mov LR y Pc / "'he PC 'ﬁ"o
1dr PC,[IP,#16] , memory lor:a:ion
rather +han
branching?

09/27/2.017 Comp 41 - Fall 2017

DynamicaLLy LINKED LIBRARIES

- Lazy address resolution:
sysload: stmfd sp!,[r0-r10,1r]

Because, the
entry points to
dynamic library
routines are
stored in a
TABLE. And the
contents of this
4able are loaded

on an "as needed”

basis! \

)

09/27/2.017

: check if stdio module

; is loaded,

if not load it

; backpatch jump table

mov
mov
str
mov
str
mov
str
mov
str
mov
str

r1,__stdio__
ro,dfopen
ro,[r1]
ro,dfclose
ro,[r1,#4]
ro,dfputc
ro,[r1,#8]
ro,dfgetc
ro, [r1,#12]
ro,dfprintf
ro,[r1,#16]

\

Comp 41 - Fall 2017

Before any call is made -I-o a]
procedure in “stdiedll”

.globl _ stdio_ :
__stdio__:

fopen:
fclose:
fgetc:
fputc:

fprintf:

.word
.word
.word
.word
.word

sysload
sysload
sysload
sysload
sysload

After the first call is made
o any procedure in “stdiodll”

.globl _ stdio_ :
__stdio__ :

fopen:
fclose:
fgetc:
fputc:

fprintf:

dfopen
dclose
dfgetc
dfputc

dprintf

MODERN LANGVAGES

Intermediate ‘object code \anguage“

High-level, portable (architecture
independent) program description Java program

PORTABLE mnemenic program “f . . M
description with symbolic memory IWM by‘recodes L'brar)’ eowhnes

references /L ‘

An application that EMULATES a

virtual machine. Can be writen < Iﬂ'l’erPre'l’er 5
for any Instruction Set Archidecture. —_

In the end, machine language

instructions must be executed for

each JMM bytecode

09/27/2.017 Comp 41 - Fall 2017

MODERN LANGVAGES

Intermediate ‘object code \anguage“

High-level, portable (architecture
independent) program description Java program

+

PORTABLE mnemenic program ap . <0
description with symbolic memory IWM by‘recodes L'brar)’ eowhnes

rences

While interpreting on the first pass
the JIT keeps a copy of the machine
language instructions used.

0

Future references access machine TOCIOyJS JlTs are nearly as
!2;,"9:‘,?9;25,’,17. avetdng further fast as a nalive compiled code.

Machine code

09/27/2.017 Comp 41 - Fall 2017

p—_ %
ASSEMBLY? REALLY? L1

—

® In the early alays compilers were dumb
o literal line-by-line generation of assembly code of 'C' source

o This was eblicient in terms ol S/W development time
m C is portable, ISA independent, write once- run anywhere
m C is easier to read and understand
m Detais of stack alocation and memory management are hidden

o However, a Savvy progrommer could nearly always generate
code that would execute fFaster

® Enter the modern era of Compilers
o Focused on oPﬁmized code—aer\er‘aﬁor\
o Captured the common tricks that low-level programmers used
o Meticulous Iaookkeepir\ﬂ (ie. will | ever use this varidble aﬂain?)
o It is hard for even the best hacker to improve on code

ﬁeneraJred by ﬁood oPJrimizina compilers
09/271/2017 Comp 4l - Fall 2017 20

NEXT TIME (1N

e Compiler code
optimization

e We look deeper into the
Rabbit hole

09/27/2017 Comp 41 - Fall 2017 21

