
09/25/2017 Comp 411 - Fall 2017

Compilers and Interpreters

● Pointers, the
addresses we see

● Programs that write
other programs

● Managing the details

1

A compiler is a program
that, when fed itself as input,
produces ITSELF!

Then how was the first
compiler written?

09/25/2017 Comp 411 - Fall 2017

Missing Details

Last time we saw how the stack was used by callee’s that are also
callers (i.e. non-leaf procedures) to save resources that “they” and
“their caller” expect to be preserved.

Our convention worked, but it had a few limitations...

1. Callee’s were limited to 4 arguments
2. All arguments “fit” into a single register
3. What is our argument is not a “value”,

but instead, an address of where to
put a result (recall scanf() from Lab 2)

2

09/25/2017 Comp 411 - Fall 2017

CallER provided Storage

If a caller calls a function that requires more than 4 arguments, it
must place these extra arguments on the stack, and remove them
when the callee returns.

3

int sum6(int a, int b, int c, int d, int e, int f) {
 return a+b+c+d+e+f;
}

int main() {
 return sum6(2,3,4,5,6,7);
}

sum6: add r0,r0,r1 ; a + b
add r0,r0,r2 ; + c
add r0,r0,r3 ; + d
ldr r1,[sp,#0] ; get e
add r0,r0,r1 ; + e
ldr r1,[sp,#4] ; get f
add r0,r0,r1 ; + f
bx lr

main: stmfd sp!,{fp,lr} ; not a leaf
sub sp,sp,#8 ; allocate
mov r0,#7 ; space for
str r0,[sp,#4] ; two extra
mov r0,#6 ; args on stack
str r0,[sp,#0]
mov r3,#5
mov r2,#4
mov r1,#3
mov r0,#2
bl sum6
add sp,sp,#8 ; deallocate
ldmfd sp!,{fp,lr}
bx lr

R0: 2
R1: 3
R3: 4
R4: 5

<used>

<used>

<free>

<free>

SP →

7

6SP →

<free>

<free>

09/25/2017 Comp 411 - Fall 2017

Complex Arguments

How do we pass arguments that don’t fit in a register?

- Arrays
- Objects
- Dictionaries
- etc.

Rather than copy the complex arguments, we instead just send an
“address” of where the complex argument is in memory.

Conundrum: Callees process “copies” of simple arguments, and thus
any modifications they make don’t affect the original. But, with
complex arguments, the callee modifies the original version.

4

09/25/2017 Comp 411 - Fall 2017

An Aside: Let’s C

C is the ancestor to most languages commonly used today.
{Algol, Fortran, Pascal} → C → C++ → Java

C was developed to write the operating system UNIX.

C is still widely used for “systems” programming

C’s developers were frustrated that the
high-level languages available at the time,
lacked all the capabilities of assembly code.

An advantage of high-level languages is that
they are portable (i.e. not ISA specific). C,
thus, was an attempt to create a portable
blend of a “high-level language” and “assembler”

5

09/25/2017 Comp 411 - Fall 2017

C begat Java

C++ was envisioned to add Object-Oriented (OO) concepts
from Simula and CLU on top of C

Java was envisioned to be more purely OO,
and to hide the details of memory
management as well as
Class/Method/Member implementation

For our purposes C is almost identical to JAVA except:
- C has “functions”, whereas JAVA has “methods”.

 - C has explicit variables that contain the addresses
 of other variables or data structures in memory.

 - JAVA hides addresses under the covers.

6

09/25/2017 Comp 411 - Fall 2017

Your first C pointer!

Let’s start with a feature that Java does not have called “pointers”

7

int i; // simple integer variable
int a[10]; // array of integers (a is a pointer)
int *p; // pointer to integer (s)

*(expression) means the contents of address computed by expression.

a[k] ≡ *(a+k)

a is a constant of type “int *”

a[k] = a[k+1] ≡ *(a+k) = *(a+k+1)

Array variables are our first hint that
“pointers” exist. The name of an array tells
us where a collections of indexable
variables could be found.

We now know that all variables are
shorthands for addresses in memory.

Normal variables are just the 0th element
of a length “1” array..

09/25/2017 Comp 411 - Fall 2017

Other Pointer Related Syntax

8

int i; // simple integer variable
int a[10]; // array of integers
int *p; // pointer to integer(s)

p = &i; // & means address of
p = a; // no need for & on a
p = &a[5]; // address of 6th element of a
*p = 1; // change value of that location
*(p+1) = 1; // change value of next location
p[1] = 1; // exactly the same as above
p++; // step pointer to the next element

The ampersand operator, “&”, means “give me the address of this variable reference”. Whereas the
star operator, “*”, means “give me the contents of the memory location implied by the
expression”. These are VERY different things. Not to mention, “&” and “*” can sometimes be
confusing because of their other uses as “anding” and “multiplying” operators.

(*p)++; // increments contents of location
*p++; // get contents, and then modify p

09/25/2017 Comp 411 - Fall 2017

Legal uses of Pointers

9

int i; // simple integer variable
int a[10]; // array of integers
int *p; // pointer to integer(s)

So what happens when: p = &i;
What is value of p[0]?
What is value of p[1]?

p[0] is always an alias for the
variable i in this context. p[1]
could reference a[0], but don’t
count on it.

09/25/2017 Comp 411 - Fall 2017

C Pointers vs. object size

10

int i; // simple integer variable
int a[10]; // array of integers
int *p; // pointer to integer(s)

i = *p++;

 Does “p++” really add 1 to the pointer?
NO! It adds 4. Why 4?

char *q;

...

q++; // really does add 1

The “char” type is slightly different than the type of the same name in
Java. C chars are 8-bit signed bytes. Java chars are 16-bits and hold
only Unicode variables (they have no sign). Java has a type called
“byte” that is most similar to a C “char”.

09/25/2017 Comp 411 - Fall 2017

Clear1,2,3, All are valid C!

11

void clear1(int array[], int size) {
 for (int i = 0; i < size; i++)
 array[i] = 0;
}

void clear2(int array[], int size) {
 for (int *p = array; p < array + size; p++)
 *p = 0;
}

void clear3(int *array, int size) {
 int *end = array + size;
 while (array < end)
 *array++ = 0;
}

Written using “Array”
semantics

Written using C “Pointer”
semantics.

Array is just a pointer.

09/25/2017 Comp 411 - Fall 2017

Pointer Summary

12

• In the “C” world and in the “machine” world:
– a pointer is just the address of an object in memory
– size of pointer is fixed, and architecture dependent,

regardless of size of object that it points to
– to get to the next object of the same type, we increment by

the object’s size in bytes
– to get the the ith object add i*sizeof(object)

• More details:
– int R[5] ≡ R (i.e. an int* to 20 bytes of storage)
– R[i] ≡ *(R+i) (array offsets are just pointer arithmetic)
– int *p = &R[3] ≡ p = (R+3) (p points to 3rd element of R)

09/25/2017 Comp 411 - Fall 2017

Indirect Addressing

• What we want:
– The contents of a memory location held in a register

• Examples:

• Caveats
– You must make sure that the register contains a valid address

(double, word, or short aligned as required)

13

“C”
int x = 10;

main() {
 int *y = &x;
 *y = 2;
}

“ARM Assembly”

x: .word 10
main: mov R2,x

mov R3,2
str R3,[R2]
bx LR

Loads the “address”
of x into R2, not its
contents

09/25/2017 Comp 411 - Fall 2017

Compilers as Template Matchers

The basic task of a compiler is to scan a file looking for particular sequences
of operators and keywords called templates.

The first major sort of template is an expression. We’ve already played around
converting C expressions to assembly language. A compiler does basically the
same thing.

Once a template is matched, a
compiler emits a specific code
sequence.

14

int x, y;
y = (x-3)*(y+123456)

x: .word 0
y: .word 0
c: .word 123456

...
ldr R0,#x
add R0,R0,-3
ldr R1,#y
ldr R2,#c
add R1,R1,R2
mul R0,R0,R1
str R0,#y

09/25/2017 Comp 411 - Fall 2017

C Arrays

15

int hist[100];
int score = 92;
...

hist[score] += 1;

hist: .space 100
score: .word 92

mov R3,#hist
ldr R2,#score
ldr R1,[R3,R2,LSL #2]
add R1,R1,#1
str R1,[R3,R2,LSL #2]

The C source code

might translate to:

hist:

:
:

92score:

hist:

Address:
 CONSTANT base address + scaled VARIABLE offset

09/25/2017 Comp 411 - Fall 2017

C “structs”

16

• C “structs” are lightweight “container objects” –
objects with members, but no methods.

• There is special “Java-like” syntax for accessing
particular members: variable.member (actually,
Java’s dot operator “.” is borrowed from C)

• You can also have pointers to structs.

C provides an new operator to access them:
 pointerVariable->member

This simplifies the alternative syntax:
 (*pointerVariable).member

struct Point {
 int x, y;
} P1, P2, *p;
...
P1.x = 157;
...
p = &P1;
p->y = 123;

09/25/2017 Comp 411 - Fall 2017

Structs in action

17

struct Point {
 int x, y;
} P1, P2, *p;
...

P1.x = 157;
...

p = &P1;
p->y = 123;

P1: .space 8
P2: .space 8
p: .space 4
…

mov R1,#P1
mov R0,#157
str R0,[R1,#0] ; P1.x = 157
str R1,#p ; p = &P1
ldr R2,#p
mov R0,#123
str R0,[R2,#4] ; p->y = 123

might translate to:

 P1:

:
:

Address:
 VARIABLE base address + CONSTANT offset

 P2:

 p:

P1.x

P1.y
P2.x
P2.y
&P1

09/25/2017 Comp 411 - Fall 2017

C “if” to Assembly Translation

18

C code:
if (expr) {
 STUFF1
} else {
 STUFF2
}

C code:
if (expr) {
 STUFF
}

ARM assembly:
 (compute expr)

beq Lendif

(compile STUFF)
Lendif:

Note: the branches used in
assembly “SKIP” code blocks
rather than cause them to be
executed. This often results
in a complement test!

ARM assembly:
 (compute expr)

beq Lelse

(compile STUFF1)
b Lendif

Lelse:

 (compile STUFF2)
Lendif:

09/25/2017 Comp 411 - Fall 2017

C “WHile” Loops

19

Assembly:
Lwhile:

(compute expr)
beq Lendw

(compile STUFF)
b Lwhile

Lendw:

C code:
while (expr) {
 STUFF
}

Alternate
Assembly:
 b Ltest

Lwhile:
(compile STUFF)

Ltest:

(compute expr)
bne Lwhile

Lendw:

Compilers spend a lot of time optimizing in and around loops.
- moving all possible computations outside of loops
- unrolling loops to reduce branching overhead
- simplifying expressions that depend on “loop variables”

09/25/2017 Comp 411 - Fall 2017

C “for” loops

20

• Most high-level languages provide loop constructs
that establish and update an iterator, which
controls the loop’s behavior

Assembly:
 (compile initialization)
Lfor:

(compute conditional)
beq Lendfor
(compile STUFF)

 (compile afterthought)
B Lfor

Lendfor:

for (initialization; conditional; afterthought) {
 STUFF;
}

For loops are the most
commonly used form of
iteration found programming
languages.

Their advantage is readability.
They bring together the three
essential components of
iteration, setting an initial
value, establishing a
termination condition, and giving
an update rule.

Ahhh, but one other
iteration forms there
are!

09/25/2017 Comp 411 - Fall 2017

Next time

• The details behind assemblers
• 2-pass and 1-pass assembly
• Linkers and dynamic libraries

21

