—_ N
COMPILERS AND TNTERPRETERS 1111

——

® Pointers, the
oddresses we see

® Programs that write
other progroms

® Managing the details

A compiler is a program

that, when fed itself as input,

produces ITSELF]
Then how was the first
;/ compiler written?

|5

f

09/25 /2017 Comp 4l - Fall 2017 |

=N
MIssiNG DETAILS ll_ﬂl_

Last time we saw how the stack was used Iay calee's that are also
calers (ie. honleak Pr'oceolures) to save resources that "+hey" ond
"their cadller" expect to be Pre;erveol.

Our convehtion worked, but it had a Few limitations..

Pl

| Callee's were limited to 4 arguments

\!E\,?a o)

2. Al arguments "‘Fit' into a single register TSI

3. What is our ar‘aumenJr is hot a "value',

but instead, an address of where to
put a result (recall scant) From Lab 2)

‘Which brings us to my next point.’

09/25/2017 Comp 4l - Fall 2017 2

CALLER PROVIDED STORAGE

1Ll

—

IF a cadler cals a function that requires more than 4 arguments, it

must Place these extra araumerﬁrs on the stack, and remove them

when the cadllee returns.

sumé : add ro,r0,r1 ;a+b
add ro0,r0,r2 ; + ¢
add ro,r0,r3 o+ d
int sum6(int a, int b, int c, int d, int e, int f) { ldr r1,[sp,#0] ; get e
return a+b+c+d+e+f; add ro,ro,r1 ; + e
} ldr r1,[sp,#4] ; get f
add ro,r0,r1 o+ f
int main() { bx 1r
return sum6(2,3,4,5,6,7);
} main: stmfd sp!, {fp,1r} ; not a leaf
sub sp,sp,#8 ; allocate
<used> mov r@,#7 ; space for
str ro,[sp,#4] ; two extra
SP — <used> mov r0,#6 ; args on stack
RO: 2 7 str r0,[sp,#0]
R1: 3 mov r3,#5
: SP — 6 mov r2,#4
R3: 4 mov r1,#3
R4- 5 <free> mov r0,#2
bl sumé
<free> add sp,sp,#8 | ; deallocate
ldmfd sp!, {fp, 1r}
09/25 /2017 Comp 41 - Fall 2017 bx1r

P
COMPLEX ARGUMENTS L]

How do we pass arguments that dont Fit in a register?

- Arrays
- ObjechG
- Dictionaries

- etc. Value Reference

Rather than copy the complex arguments, we instead just send an
‘address' ofF where the complex argument is in memory.

Conundrum: Callees process 'copies’ of simple arguments, and thus
any modifications they make don't affect the original. But, with
complex arﬁumerﬂrs, the cadllee modifies the oriﬁir\al version.

09/25 /2017 Comp 4l - Fall 2017 4

p—_ %
AN ASIDE; LETS € ﬂ:ﬂ

C is the ancestor +o most Ianﬂuaaeg commonly used +oclay.

{Alﬂol, Fortran Pascal} — C — C++ — Java
C was developed to write the operating system UNIX.
C is otill wiclely used for "c;stremc:»" programming

C's developers were frustrated that the
hiah—level Ianauaaes available at the time,
lacked all the capabilities of ac:»c;emlaly code.

An aalvanJrage of high-level languages is that
+hey are Pormble (ie. not ISA speciﬁc). C,

thus, was an a++emP+ to create a PorJralole

blend of a "hiah—level Iar\ﬁuage" and "assembler"

09/25/2017 Comp 4l - Fall 2017 5

€ BEGAT JAVA

C++ was ehvisioned to add Olajec’r-OrienJred (00) concepts
From simula and CLU on top of C

Java was envisioned to be more purely OO,
and to hide the details of memoty
manaaemerﬁ os well as
Class/Method/Member implementation

For our purposes C is amost identical o JAVA except:
- C has "Functions' whereas JAVA has 'methods.

- C haos exPlicPr variables that contain the addresses
of other varidbles or data structures in memor-y.

- JAVA hides addresses under the covers.

09/25 /2017 Comp 41 - Fall 2017

Your FIRST € POINTER!

Lets start with a feature that Java does hot have called "PoirH'er‘G"

int 1;

int a[19];

int *p;

// simple integer variable
// array of integers (a is a pointer)
// pointer to integer (s)

*(expression) means the contents of address computed by expression

alk] =
a 1s a

alk] =

09/25 /2017

*x(a+k)

constant of type “int *”

alk+1]

x(a+tk) = *(a+k+1)

Comp 41 - Fall 2017

Array variables are our first hint that
“pointers” exist. The name of an array tells
us where a collections of indexable
variables could be found

We now know that all variables are
shorthands for addresses in memory.

Normal variables are just the 0% element
of a length “I" array. \

)

OTHER POINTER RELATED SYNTAX

int i; // simple integer variable

int a[l0]; // array of integers

int *p; // pointer to integer(s)

p = &i; // & means address of

p = a; // no need for & on a

p = &a[5]; // address of 6™ element of a

*p = 1; // change value of that location
*(p+l) = 1; // change value of next location
pll] = 1; // exactly the same as above

p++; // step pointer to the next element

(*p)++; // increments contents of location
*p++; // get contents, and then modify p

The ampersand operator, “&”, means “give me the address of this variable reference”. Whereas the
\‘ / star operator, “*", means “give me the contents of the memory location implied by the
expression”. These are VERY different things. Not fo mention, “&” and “*" can sometimes be
& confusing because of their other uses as “anding” and “muliplying” operators.

09/25 /2017 Comp 41 - Fall 2017

LEcAL VSES OF POINTERS

int i; // simple integer variable
int a[l0]; // array of integers
int *p; // pointer to integer (s)

So what happens when: p = &i;
What is value of p[0]?

What is value of p[1l]°?
pl0] is always an dlias for the
variable i in this context. pfl]
could reference al0], but don't
count on i \

)

09/25 /2017 Comp 41 - Fall 2017

€ POINTERS VS. OBTECT SIZE

int i; // simple integer variable
int a[l0]; // array of integers

int *p; // pointer to integer(s)

1 = *p++;

Does “p++” really add 1 to the pointer?
NO! It adds 4. Why 4°

The “char” type is slightly different than the 4ype of the same name in

char *qg; Java. C chars are 8-bit signed byles. Java chars are 16-bits and held
\ / only Unicode variables (they have no sign). Java has a type called

At? “byte” that is most similar fo a C “char”.

gt++; // really does add 1

09/25 /2017 Comp 41 - Fall 2017

CLEAR)2,S, ALL ARE VALID C!

void clear1(int array[], int size) {jhgﬁmfmAmy
for (int i = 0; i < size; i++)
array[i] = ©;

}
void clear2(int array[], int size) WriHen using C "Poinfer”
for (int *p = array; p < array +/gif‘“5p++
*p = 0
}

void clear3(int =*array, int size) {
. . . "7\ Array is just a pointer.
int *end = array + size; '/h
while (array < end)
*array++ = 0;

09/25 /2017 Comp 41 - Fall 2017

POINTER SUMMARY

. 1N the 'C" world and in the 'machine' world:
a pointer is just the address of an object in memory

\

size ofF pointer is Fixed, and architecture dependen+,
reﬂardless of size of object that it points to

to ae’r to the next olojec’r ofF the same +ype, we increment loy
the olojec’r’s size in onJres

to get the the i object add tsizeo object)

. More details:

- int R[5] = R (ie. an intt to 20 Iay’res of s’ror'aae)
- R[i] = *(R+i) (array ofFsets are just pointer arithmetic)
- int *p = &R[3] = p = (R+3) (p points to 3™ element of R)

09/25 /2017 Comp 41 - Fall 2017 12

INDIRECT ADDRESSING

- What we want:
- The contents of a memory location held in a register

Examp\esz
“ARM Assembly”
“C”
: —) : .word 10 Loads the “address”
ot x = 10 :1ain: m:v R2,x 4 :;L’::RZ,AO'}HS
main () { mov R3,2
int *y = &x; str R3, [R2]
*y = 2; bx LR
}
Caveats

- You must make sure that the register contains a valid address
(double, word, or short aliﬁneol as r'equireol)

09/25 /2017 Comp 41 - Fall 2017 3

=N
COMPILERS AS TEMPLATE MaTcHERS |||

—

The basic task of a compiler is to scan a Fie |oo|<inﬂ For particulor sequences
of operators and keywordc; caled templates.

The First major sort of template is on expression We've already Playeal around
cor\verﬂnﬁ C expressions to ac;csemlaly |anguaae. A comPiler does bac;ically the

same +hlnﬁ.
x: .word O
y: .word O
. c: .word 123456
int x, vy,
= (x-3)*(y+123456 cc
(x=3)*(y) 1dr RO, #x
add R0 RO, -3
1dr R1 #y
1dr R2 #c
. add R1 R1 ,R2
Once a template is matched, a mul RO, RO, R1

compiler emits a specific code str RO, #y’

sequence.

09/25/2.017 Comp 4l - Fall 2017 14

€ ARRAYS

The C source code

int hist[100];
int score = 92;

hist[score] += 1; score.

might translate to:

hist: .space 100
score: .word 92
mov R3,#hist
ldr R2, #score
ldr R1l, [R3,R2,LSL #2]
add R1,R1,#1
str R1l, [R3,R2,LSL #2]

92

hist:

Aclclress:
CONSTANT base address + scaled VARTABLE offse}

09/25 /2017 cprlm«-lezon

€ "“srevers”

. C "structs' are \i@h’rweiﬁth ‘container objec’rcs" -
objects with members, but no methods.

. There is special 'Java-like' syntox For accessing
particular members: variablemember (ac+ually,
Java's dot operator " is borrowed from C)

- You cah also have PoinJrer‘s to structs.

C Pr'ovioles an new operator to access them:
poin+er\/ariable->member struct Point {

int x, y;
} P1, P2, *p;
This simplities the alternative syntax: k= 157,
(fpoim‘er‘\/ar'iable)member -
p = &P1l;
p->y = 123;

09/25 /2017 Cowplﬂr-leZOW

STRUCTS IN ACTION L]

struct

Point {

int x, y;
} P1, P2, xp;

P1.x =

p
P->y =

157;

&P1;

123;

m:9h+ +ranslate to:

.space 8
P2. .space 8
p: .space 4

mov
mov
str
str
1ldr
mov
str

09/25 /2017

R1, #P1

RO, #157
RO, [R1,#0]
R1,#p

R2, #p

RO, #123
RO, [R2,#4]

Address:
VARTABLE base address + CONSTANT offset

p &P/1
P2ly
P2: P2[x
P1ly
: P1.x = 157 P1: P1|x
7 p = &P1
; p->y = 123

COWP‘MW-Fd|Z@7 7

€ “IF” T6 ASSEMBLY TRANSLATION

C code:

if (expr) {
STUFF
}

C code:

if (expr) {
STUFF1

} else {
STUFF2

}

09/25 /2017

ARM assembly:

(compute expr)
beq Lendif

(compile STUFF)

Lendif:

Note: the branches used in

assembly “SKIP* code blocks ™ (Y
rather than cause them o be
executed. This offen resulls

in a complement fest!

Comp 41 - Fall 2017

ARM assembly:

(compute expr)
beq Lelse

(compile STUFF1)
b Lendif
Lelse:

(compile STUFF2)

Lendif:

C "WHILE” LooPs

C code:

while (expr)
STUFF
}

{

Assembly:
Lwhile:
(compute expr)
beq Lendw
(compile STUFF)
b Lwhile
Lendw:

Alternate
Assembly:

b Ltest

Lwhile:
(compile STUFF)

Ltest:

(compute expr)
bne Lwhile

Lendw:

Compilers spend a lot of time optimizing in and around loops.
- movina all Poc;c;ible comPquaJrions outside of IooPc;

- unroling loops to reduce Ioranchina overhead

- GimPIiPyinﬂ expressions that depend on ‘loop variables'

09/25 /2017

Comp 41 - Fall 2017

C "FOR” LOOPS l

Most high-level lanauajes Pr'ovicle loop constructs
that establish and update an iterator, which
controls the loop's behavior

for (initialization; conditional; afterthought) {

STUFF;
}
For loops are the most
commonly used form of
Assemb |¥ - iteration found programming
(compile initialization) langucges.
Lfor: Their advantage is readabiliy.
Y — They bring fogether the three
(compute conditional) n N Av i
beq Lendfor ? § iteration, seHsi':g an initial
. value, establishing a
(CO mp I_I e STUF F) termination condition, and giving
(compile afterthought) an update rule.
B Lfor Ahhh, but one other
Lendfor: :l':el:la'l'lon forms there

L
09/25 /207 Comp 4l - Fall 2017 M 20

NEXT TIME

. The details behind assemblers
- 2-pass and -pass assemlaly
. Linkers and dynamic libraries

oA
_vexy

09/25 /2017 Comp 41 - Fall 2017

