Basics oF CALLING

LDR RO,

LDR R1,

BL GCD

STR RO, z
halt: B halt
X: .word 35
y: .word 55
Z: .word ©
09/20/2.017

X GCD:
/

int gcd(a,b) {
|

while (a !'= b) {
if (a > b) {
a=a-b;
} else {
b=Db-a
}
}
return a;
}
int x = 35;
int y = 55;
int z;
z = ged(x, y);

ComP 41 - Fall 2017

CMP
BXEQ
SUBGT
SUBLT

RO, R1

LP

RO, RO, R1
R1,R1,R0
GCD

Here the assembly lanquage
version is actually shorter

" than the C/Java version.

U4

=)

THAT WAS A LITTLE TOo EASY

—
LDR RO,)-(/)fact: CMP RO, #1
BL fact BXLE LP
STR RO, vy MOV R1,R0
halt: B halt SUB RO, RO, #1
. d 5 BL fact
X -wor MUL RO, RO, R1
y: .word 0 BX Lp
int fact(x) {
if (x <= 1)
return x; This fime, things are really messed up.
else The recursive call o facl{) overwrites
return x*xfact(x-1); the value of x that was saved in RI.
} 2
it = 5 G ik
int Y I knew there was a reason
that T aveid recursion.
y = fact(x);

09/20/2.017 Comp 41 - Fall 2017

NEXT TIME

09/20/2017

® Stacks
e Contracts
© \Nri’rina

serious code

Comp 41 - Fall 2017

STACKS AND PROCEDURES

I forgot, am I Don't know. But, if
the Caller you PUSH again T'm
or Callee? \ / gonna POP you.

N

Language support Lor modular code is an integral part ofF modern com puter
organization. In particular, support for subroutines, procedures, and Funchons.

09/2.0/2.017 Comp 41 - Fall 2017

p—_ %
THE BEAVTY OF PROCEDURES L]

e Reusable code Pr‘aﬁmenJrs (modular desian) -0

clear_screen();
// code to draw a bunch of lines
clear_screen();

® Parometerized Pr'ocedures (variable behaviors)
line(x1,y1,x2,y2,color); for (dnt i = 0: i < N-1: i++)
; . line(x[i],yl[i],x[i+1],y[i+1],color);
line(x2,y2,x3,y3, color); Line(x[i],ylil,x[0],y[8],color);
e Functions (procedures that return values)

xMax = max(max(x1,x2),x3);
yMax = max(max(y1,y2),y3);

\0

09/20/2.017 Comp 4l - Fall 2017 5

MORE PROCEDURE POWER

® Global vs. Local scope (Name Independence)

int x = 9; & These are different “x"s How do we
int f int {
et - keep track of
} all these
int foo(int i) { variables?
int x = 0; //
while (i > 8) { o —Thisis yet another *x" 2
X = X + fee(i}$—§F§ .1|'
i=1i-1;
,.et}u,.n X That “fee()" seems odd o me?
} And, foo()'s a liHle square.
main() {

\\ \\‘ A
fee(foo(x));
| ’/:%g;it fi?{

09/2.0/2.017 Comp 41 - Fall 2017

UsiNG PROCEDURES

* A ‘cdling' program (Caller) must:

- Provide Proceclur‘e parameters. In other words, put arguments
in a place where the Procedure can access them

- Traonsfer control to the Pr'ocedur‘e
'Branch' 1o it, and rowde a 'link" back

o A ‘cdled Procedure (Callee) must

- Acquire/create resources needed to Perf—orm the function
(local varidbles, registers, etc.)

- Perform the function

- Place results in a place where the Caler can Find them

- Return control back to the Cdller through the supplied link
e Solution (a least a partial one):

- WE NEED CONVENTIONS, agr‘eeol upon standards for how arguments
are Pasc;ed in and how funhction results are retrieved

- Solution Par'+ #. Allocate reﬁlsi'erc; For these GPeCI—pIC Functions
09/2.0/2.017 Comp 41 - Fall 2017

ARM REGISTER

VSAGE

Recadl these conventions from last time

e Conventions desiﬂnoﬂ'e Register
registers For procedure RO-R3
arguments (RO-R3) and
return values (RO-R3). RA-R10

o The ISA desianaJres a
“Iir\kage PCJ'II’H'G\"ll LOY‘ R11
caliing procedures (Ri4)

e Transfer control to R12
Qallee ugna the BL R13
iInstruction

e Return to Caller with i
the BX LP instruction

R15

09/2.0/2017

Comp 41 - Fall 2017

Use

First 4 procedure arguments.
Return values are placed in RO and R1.

Saved registers. Must save before using
and restore before returning.

FP - Frame pointer
(to access a procedure’s local variables)

IP - Temp register used by assembler

SP - Stack pointer
Points to next available word

LP - Link Pointer (return address)

PC - program counter

—_ N
AND IT ALMOST Works! Im

—

X: .word 9 Works for cases where Callees

need few resources and call no

other functions.
Callee

fee: ADD RO,RO,RO This type of function (one that calls
ADD RO, RO, #1 doeeili® no other) is called a LEAF function.
specified register.
BX LP = Here it lsr:ged‘l'o))
return do the cddress But there are still a few issues:
afler the one where
“fee” was called How does a Callee call functions?
Caller More +han 4 arquments?
ma in : LDR R@ =X Recall +hat when the “L*)
P " e — ki oppended o [ocal variables?
branch instruction, it
BL ee causes the address of Where does main return +o°
BX L P the next instruction o
be saved in the “linkage

pointer”, LP. Let's consider +he worst case of a

Callee who is a Caller..

09/20/2.017 Comp 4l - Fall 2017 9

CALLEES WHO cALL THEMSELF!

int sqgr(int x) {
if (x > 1)
x = sqr(x-1)+x+x-1;
return x;

}
main ()
sqr (10) ;
Oh, recursion

ywsmwa

headache.

09/2.0/2017

S

How do we go about writing
nor-leak procedures?
Procedures that call other
procedures, perhaps even
themselves.

sqr(10) = sqr(9)+10+10-1 =100
sqr(9) = sqr(8)+9+9-1 = 81
sqr(8) = sqr(7)+8+8-1 = 64
sqr(7) = sqr(6)+7+7-1 = 49
sgr(6) = sgr(5)+6+6-1 = 36
sqr(5) = sqr(4)+5+5-1 = 25
sqgr(4) = sqgr(3)+4+4-1 = 16
sqr(3) = sqr(2)+3+3-1 =9
sqr(2) = sqr(1)+2+2-1 =4
sqr(1) =1

sqr(0) =0

Comp 4l - Fall 2017 10

int sqgr (int x) { sqr: CMP
if (x > 1) BLE
X = sqgr (x-1)+x+x-1; Riisclobbered — - MOV
return x; ©n successive SUBR
} CO"S. BI,
ADD
ADD
main () SUBR
{ return: BX
sqgr (10) ;
} main: MOV
BL
BX

RO, #1
return
R4, RO
RO,RO, #1
SOR

RO, RO, R4
RO, RO, R4

RO,RO, #1 Weadlse
P ClObbet' our

9 _retumn

z% address, so
RO, #10 there's no
Sqr way back!

LP

Will savir\ﬂ "% in memory rather than in a regierer help?

ie. reploce MOV R4,RO with STR RO, x and athg LDR R4,x after BL SQR

09/20/2.017 Comp 41 - Fall 2017

A PROCEDURE'S STORAGE NEEDS

® In addition to a conventions for using registers o pass in arguments
ond return results, we also need a mears for adlocating new
variobles for each instance when a procedure is called The 'Local
variobles' of the Callee:

® Locadl varidbles are specitic to a 'particular' invocation or activation
of the Callee. Collectively, the arguments passed in, the return
address, and the callee’'s local varidbles are its activation record or
call frame.

09/2.0/2.017 Comp 41 - Fall 2017 12

LIVES OF ACTIVATION RECORDS

int sqgr(int x) {

if (x> 1) Where are activation
= sqgr(x-1)+x+x-1;
ceturn x; e records stored?
}
, TIME

sqr(3) sqr(3) sqr(3) sqgr(3) | | sqr(3)
sqr(2) sqr(2) sqr(2)
sqr(1)

Each call of sqp) has a diferent notion of —_ g/
what °x" is, and a different place 4o return fo. gb»

A Proceclure CCI” Cl"€CI+€S a hew Re-l-urn -l-o PreViOuS CIC'HVCI'HOn l"GCOl"cl
activation record. Caller’s record when procedure finishes, permanently
is preserved because we'll need it cliscarding activation record created by
when call finally returns. call we are returning from.

09/2.0/2.017 Comp 41 - Fall 2017 3

WE NEED DYNAMIC STORAGE!

What we heed is a
SCRATCH memory For

holding temporary varidbles.
We'd like For this memory

to grow and shrink. as

heeded And, we'd ke it to
have an easy manaaemen+

Policy.
One Possibilﬂy is a

STACK

A last-in-First-out (LIFO)
data structure.

09/2.0/2017

Comp 41 - Fall 2017

Some in+er'e9+in3
properties ofF
stacks:

SMALL OVERHEAD.

Every+hin3 is
referenced relative
to the top, the
so-call

'+oP—o-P_9+ack'
Add things by
PUSHING new values
on +oP.

Remove things by

POPPING values.

ARM STack CONVENTION
CONVENTIONS:

. Dedicate a register Lor
the Stack Pointer
(sP = B). SP

.- Stack grows DOWN
(towards lower addresses)
on pushes and dllocates

- SP Poin+9 to the last or
TOP *usedt location.

- Stack is placed far away 00000008,

From the program
and its data.

09/2.0/2.017 Comp 41 - Fall 2017

Higher

80000000,

“stack” segment

'

“fex}” seqment
(Program) 4

Reserved

Lower
addresses

Pois syt 4o

4QL 34 1Pyt st
Ay, ~wwny

STACK MANAGEMENT

ALLOCATE k: reserve k WORDS of stack
SP =3P -4% [ADD SP,SP,#-4*kJ

DEALLOCATE k: release k. WORDS of stack.
SP = SP + 4%k

[ADD SP,SP,#4*k]

PUSH %x: Push Keg[x] onto stack

Mem[SP -4] = [J
SP - SP i 4 4 3 i Ot LA O [s 4 4 STRIZ RX,[SP,#-4]!

POP %x: pop -l-he +0|9 oF the e-l'ack into Reg[x]
Rx = Mem|[SP]
SP — SP + 4 4 2 141 334 & 4 [LDR RX,[SP]’#4 J

D type: 1110 010 |O0o|Of0Oj0O]|1 Rn Rd Imm1z2 ‘

09/2.0/2.017 comp 4l - all 207

TURBS STack INSTRUCTIONS i

Recal ARM's block move instructions LDMFD and STMFD
when used with the SP.

STMFD SP!, {r4,r7,LP} LRMFD SP!, {r4,r7,LP}
increasing increasing
addresses <used> addresses <used>
* <used> * <used>
<used> [|®— |nitial SP <used> 1@ Final SP
LP LP
R7 R7
R4 1@ Final SP R4 1€ Initial SP
<free> <free>
<free> <free>

09/20/2.017 Comp 41 - Fall 2017

INCOrRPORATING A STACK

int sqgr (int x) {
if (x > 1)

X = sqgr (x—-1)+x+x-1;

return Xx;

main ()

sqgr (10) ;

09/2.0/2017

return:

main:

Comp 41 - Fall 2017

STME'D
CMP
BLE
MOV
SUB
BL
ADD
ADD
SUB
LRMFD
BX

MOV
BL
BX

SP!, {R4,LP}
RO, #1
return

R4, RO
RO,RO, #1
SOR

RO, RO, R4
RO, RO, R4
RO,RO, #1
SP!, {R4,LP}
LP

RO, #10
sqr
LP

p—_ %
NEXT TIME 1]

Stil some loose ends to tie up

. More than 4 araumerﬁrc;
2. Addresses of arguments
3, Complex arﬁumenJr +ypec5

D type:| 1110 010 {000 |0 |1 Rn Rd Imm12

09/20/2.017 Comp 4l - Fall 2017 19

