
09/20/2017 Comp 411 - Fall 2017

Basics of Calling

LDR R0, x
LDR R1, y
BL GCD
STR R0, z

halt: B halt

x: .word 35
y: .word 55
z: .word 0

1

GCD: CMP R0,R1
BXEQ LP
SUBGT R0,R0,R1
SUBLT R1,R1,R0
B GCDint gcd(a,b) {

 while (a != b) {
 if (a > b) {
 a = a - b;
 } else {
 b = b - a;
 }
 }
 return a;
}

int x = 35;
int y = 55;
int z;

z = gcd(x, y);

Here the assembly language
version is actually shorter
than the C/Java version.

09/20/2017 Comp 411 - Fall 2017

That was a little too EASY

2

LDR R0, x
BL fact
STR R0, y

halt: B halt

x: .word 5
y: .word 0

fact: CMP R0,#1
BXLE LP

 MOV R1,R0
SUB R0,R0,#1
BL fact
MUL R0,R0,R1
BX LP

int fact(x) {
 if (x <= 1)
 return x;
 else
 return x*fact(x-1);
}

int x = 5;
int y;

y = fact(x);

This time, things are really messed up.

The recursive call to fact() overwrites
the value of x that was saved in R1.

To make a bad thing worse,
the LP is also overwritten.

I knew there was a reason
that I avoid recursion.

09/20/2017 Comp 411 - Fall 2017

Next Time

● Stacks
● Contracts
● Writing

serious code

3

09/20/2017 Comp 411 - Fall 2017

Stacks and Procedures

Language support for modular code is an integral part of modern computer
organization. In particular, support for subroutines, procedures, and functions.

4

Don’t know. But, if
you PUSH again I’m

gonna POP you.

I forgot, am I
the Caller
or Callee?

09/20/2017 Comp 411 - Fall 2017

The Beauty of Procedures

● Reusable code fragments (modular design)
clear_screen();

… // code to draw a bunch of lines
clear_screen();

…
● Parameterized procedures (variable behaviors)

line(x1,y1,x2,y2,color);
line(x2,y2,x3,y3,color);

…
● Functions (procedures that return values)

xMax = max(max(x1,x2),x3);
yMax = max(max(y1,y2),y3);

5

for (int i = 0; i < N-1; i++)
 line(x[i],y[i],x[i+1],y[i+1],color);
line(x[i],y[i],x[0],y[0],color);

09/20/2017 Comp 411 - Fall 2017

More Procedure Power

● Global vs. Local scope (Name Independence)
int x = 9;

int fee(int x) {
return x+x-1;

}

int foo(int i) {
int x = 0;
while (i > 0) {

 x = x + fee(i);
 i = i - 1;

}
 return x;
}

main() {
 fee(foo(x));
}

6

These are different “x”s

This is yet another “x”

How do we
keep track of
all these
variables?

That “fee()” seems odd to me?
And, foo()’s a little square.

09/20/2017 Comp 411 - Fall 2017

Using Procedures

● A “calling” program (Caller) must:
– Provide procedure parameters. In other words, put arguments

in a place where the procedure can access them
– Transfer control to the procedure.

“Branch” to it, and provide a “link” back
● A “called” procedure (Callee) must:

– Acquire/create resources needed to perform the function
(local variables, registers, etc.)

– Perform the function
– Place results in a place where the Caller can find them
– Return control back to the Caller through the supplied link

● Solution (a least a partial one):
– WE NEED CONVENTIONS, agreed upon standards for how arguments

are passed in and how function results are retrieved
– Solution part #1: Allocate registers for these specific functions

7

09/20/2017 Comp 411 - Fall 2017

ARM Register Usage

Recall these conventions from last time

● Conventions designate
registers for procedure
arguments (R0-R3) and
return values (R0-R3).

● The ISA designates a
“linkage pointer” for
calling procedures (R14)

● Transfer control to
Callee using the BL
instruction

● Return to Caller with
the BX LP instruction

8

Register Use

R0-R3 First 4 procedure arguments.
Return values are placed in R0 and R1.

R4-R10 Saved registers. Must save before using
and restore before returning.

R11 FP - Frame pointer
(to access a procedure’s local variables)

R12 IP - Temp register used by assembler

R13 SP - Stack pointer
Points to next available word

R14 LP - Link Pointer (return address)

R15 PC - program counter

09/20/2017 Comp 411 - Fall 2017

And it almost works!

Works for cases where Callees
need few resources and call no
other functions.

This type of function (one that calls
no other) is called a LEAF function.

But there are still a few issues:
 How does a Callee call functions?
 More than 4 arguments?
 Local variables?
 Where does main return to?

Let’s consider the worst case of a
Callee who is a Caller...

9

x: .word 9

fee: ADD R0,R0,R0
 ADD R0,R0,#1

BX LP

main: LDR R0,=x
BL fee
BX LP

Recall that when the “L”
suffix is appended to a
branch instruction, it
causes the address of
the next instruction to
be saved in the “linkage
pointer”, LP.

The “BX” instruction
changes the PC to the
contents of the
specified register.
Here it is used to
return to the address
after the one where
“fee” was called.

Callee

Caller

09/20/2017 Comp 411 - Fall 2017

Callees who call themself!

10

How do we go about writing
non-leaf procedures?
Procedures that call other
procedures, perhaps even
themselves.

int sqr(int x) {
 if (x > 1)
 x = sqr(x-1)+x+x-1;
 return x;
}

main()
{
 sqr(10);
}

Oh, recursion
gives me a
headache.

sqr(10) = sqr(9)+10+10-1 = 100
sqr(9) = sqr(8)+9+9-1 = 81
sqr(8) = sqr(7)+8+8-1 = 64
sqr(7) = sqr(6)+7+7-1 = 49
sqr(6) = sqr(5)+6+6-1 = 36
sqr(5) = sqr(4)+5+5-1 = 25
sqr(4) = sqr(3)+4+4-1 = 16
sqr(3) = sqr(2)+3+3-1 = 9
sqr(2) = sqr(1)+2+2-1 = 4
sqr(1) = 1
sqr(0) = 0

09/20/2017 Comp 411 - Fall 2017

A First Try

11

int sqr(int x) {
 if (x > 1)
 x = sqr(x-1)+x+x-1;
 return x;
}

main()
{
 sqr(10);
}

sqr: CMP R0,#1
BLE return
MOV R4,R0
SUB R0,R0,#1
BL SQR
ADD R0,R0,R4
ADD R0,R0,R4
SUB R0,R0,#1

return: BX LP

main: MOV R0,#10
BL sqr
BX LP

R4 is clobbered
on successive
calls.

We also
clobber our
return
address, so
there’s no
way back!

OOPS!

Will saving “x” in memory rather than in a register help?

i.e. replace MOV R4,R0 with STR R0,x and adding LDR R4,x after BL SQR

09/20/2017 Comp 411 - Fall 2017

A Procedure’s Storage Needs

● In addition to a conventions for using registers to pass in arguments
and return results, we also need a means for allocating new
variables for each instance when a procedure is called. The “Local
variables” of the Callee:

...
{
int x, y;

 ... x ... y ...;
}

● Local variables are specific to a “particular” invocation or activation
of the Callee. Collectively, the arguments passed in, the return
address, and the callee’s local variables are its activation record, or
call frame.

12

09/20/2017 Comp 411 - Fall 2017

Lives of Activation Records

13

int sqr(int x) {
 if (x > 1)
 x = sqr(x-1)+x+x-1;
 return x;
}

sqr(3)

TIME

A procedure call creates a new
activation record. Caller’s record
is preserved because we’ll need it
when call finally returns.

Return to previous activation record
when procedure finishes, permanently
discarding activation record created by
call we are returning from.

sqr(3)
sqr(2)

sqr(3)
sqr(2)

Where are activation
records stored?

sqr(3)
sqr(2)
sqr(1)

sqr(3)

Each call of sqr(x) has a different notion of
what “x” is, and a different place to return to.

09/20/2017 Comp 411 - Fall 2017

We need dynamic storage!

14

What we need is a
SCRATCH memory for
holding temporary variables.
We’d like for this memory
to grow and shrink as
needed. And, we’d like it to
have an easy management
policy.

Some interesting
properties of
stacks:

SMALL OVERHEAD.
Everything is
referenced relative
to the top, the
 so-called
 “top-of-stack”

Add things by
PUSHING new values
on top.

Remove things by
POPPING off values.

One possibility is a

STACK

A last-in-first-out (LIFO)
data structure.

09/20/2017 Comp 411 - Fall 2017

ARM Stack Convention

15

CONVENTIONS:
• Dedicate a register for

the Stack Pointer
(SP = 13).

• Stack grows DOWN
(towards lower addresses)
on pushes and allocates

• SP points to the last or
TOP *used* location.

• Stack is placed far away
from the program
and its data.

SP

Higher
addresses

Lower
addresses

Humm… Why
is that the TOP
of the stack?

Reserved

“text” segment
(Program)

“stack” segment
8000000016

0000000816

09/20/2017 Comp 411 - Fall 2017

Stack Management

16

ALLOCATE k: reserve k WORDS of stack
 SP = SP - 4*k

DEALLOCATE k: release k WORDS of stack
 SP = SP + 4*k

PUSH $x: push Reg[x] onto stack
Mem[SP - 4] = Rx
SP = SP - 4

POP $x: pop the top of the stack into Reg[x]
 Rx = Mem[SP]

 SP = SP + 4

STR RX,[SP,#-4]!

ADD SP,SP,#-4*k

ADD SP,SP,#4*k

LDR RX,[SP],#4

09/20/2017 Comp 411 - Fall 2017

Turbo Stack InstrucTions

Recall ARM’s block move instructions LDMFD and STMFD
when used with the SP.

STMFD SP!,{r4,r7,LP} LRMFD SP!,{r4,r7,LP}

17

<free>

<free>

Initial SP

increasing
addresses

<free>

<free>

<used>

<used>

<used>
increasing
addresses

Final SP

R4

R7

LP

Initial SP<free>

<free>

<free>

R4

R7

LP

Final SP

<used>

<used>

<used>

09/20/2017 Comp 411 - Fall 2017

Incorporating A StaCK

18

int sqr(int x) {
 if (x > 1)
 x = sqr(x-1)+x+x-1;
 return x;
}

main()
{
 sqr(10);
}

sqr: STMFD SP!,{R4,LP}
CMP R0,#1
BLE return
MOV R4,R0
SUB R0,R0,#1
BL SQR
ADD R0,R0,R4
ADD R0,R0,R4
SUB R0,R0,#1

return: LRMFD SP!,{R4,LP}
BX LP

main: MOV R0,#10
BL sqr
BX LP

09/20/2017 Comp 411 - Fall 2017

Next time

Still some loose ends to tie up

1. More than 4 arguments
2. Addresses of arguments
3. Complex argument types

19

010 1 Rn1110 Rd Imm12D type:

4 3 1 1 1 1 1 4 4 12

0000

