
09/18/2017 Comp 411 - Fall 2017

Assembling the last few bits

● Multiplication
● Division
● Block transfers
● Calling procedures
● Usage conventions

1

Grades for Labs 1 and 2 should be posted.

Problem Set #1 due midnight Wed (9/20)

09/18/2017 Comp 411 - Fall 2017

SOme “oDD” instructions

The ARM multiply instruction was kind of an afterthought.
It is “shoe-horned-in” using unused R-type encodings.

2

000 0 0 0 A S Rd1110 Rn RmR type:

4 3 4 1 4 4 4 4

Rs 1 0 0 1

if A == 0
MUL Rd,Rm,Rs ; Rd = Rm*Rs

if A == 1
MLA Rd,Rm,Rs,Rn ; Rd = Rm*Rs+Rn

You may recall that
R-type instructions with
included shifts always
required bit 4 to be “0”.
If bit 4 is a “1”, several new
instructions emerge.

Also, notice that for some odd reason, they
swapped the meaning of the Rd and Rn fields

All operands of multiply
instructions are assumed
to be 2’s-complement
integers.

09/18/2017 Comp 411 - Fall 2017

Division, not one

ARMv7 does not provide a DIVIDE instruction. Reasons?

1. Divisions often require multiple cycles
2. Integer divisions provide two results,

a quotient and a remainder
3. Divisions by known constants can be

implemented via multiplication and shifts
4. In floating point 1/y is easy to compute,

so the product x/y = x*(1/y) is often
the implementation of choice

5. Usually implemented as a function.

3

09/18/2017 Comp 411 - Fall 2017

Another “oDD” instruction

ARM also provides an instruction that swaps the contents
of registers with a memory location.

4

000 1 0 B 0 0 Rn1110 Rd RmR type:

4 3 4 1 4 4 4 4

0 0 0 0 1 0 0 1

SWP Rd,Rm,[Rn] ; Rd <-- Memory[Rn]
 ; Memory[Rn] <-- Rm

Swap is used to implement
synchronization primitives
that are used by multiple
processors and threads.
The instruction is “atomic”

Rd and Rn are back in their usual places

The “B” bit when “0”
swaps a word, and when
“1”, it swaps a byte

09/18/2017 Comp 411 - Fall 2017

Block Transfers

Arm provides a useful instruction for storing multiple registers into
memory sequentially. It shares some commonality with the LDR and
STR instructions.

5

100 L Rn1110 Register VectorB type:

4 3 1 1 1 1 1 4 16

10UP

L P U Instruction

1 0 1 LDMFD Rn!,{list of regs} ; save regs to increasing addresses

0 1 0 SRMFD Rn!,{list of regs} ; load regs from decreasing addresses

Examples:
SRMFD SP!, {R4,R5,R6,LP}

...
LRMFD SP!, {R4,R5,R6,PC}

09/18/2017 Comp 411 - Fall 2017

Conditional Execution

Recall how branch instructions could be executed conditionally, based on the
status flags set from some previous instruction. Also recall that, while
condition flags are generally set using CMP or TST instructions, many
instructions can be used to set status flags. Actually, there is full symmetry.
Most instructions, in addition to branches can also be executed conditionally.

6

6

101 LCond Imm24B type:

0000 - EQ - equals
0001 - NE - not equals 1000 - HI - higher (unsigned)
0010 - CS - carry set 1001 - LS- lower or same (unsigned)
0011 - CC - carry clear 1010 - GE - greater or equal
(signed)
0100 - MI - negative 1011 - LT - less than (signed)
0101 - PL - positive or zero 1100 - GT- greater than (signed)
0110 - VS - overflow 1101 - LE- less than or equal (signed)
0111 - VC - no overflow 1110 - “” - always

010 L RnCond Rd Imm12D type: 00U1

011 L RnCond RdX type: 00U1 RmShift L
A

0

000 Opcode S RnCond Rd RmR type: Shift L
A

0

001 Opcode S RnCond Rd Imm8RotateI type:

09/18/2017 Comp 411 - Fall 2017

Example of Conditional Execution

CMP R3,R4 ; if (i >= j)
BLT else ;
SUB R0,R3,R4 ; x = i - j;
B endif ; else

else: SUB R0,R4,R3 ; x = j - i;
endif:

7

CMP R3,R4 ; x = (i >= j) ? i - j : j - i;
SUBGE R0,R3,R4 ;
SUBLT R0,R4,R3 ;

This code is not only
shorter, but it is much
faster. Generally, taken
branches are slower than
ALU instructions on ARM.

09/18/2017 Comp 411 - Fall 2017

Supporting procedure Calls

Functions and procedures are essential components of code reuse.
The also allow code to be organized into modules. A key component
of of procedures is that they clean up behind themselves.

Basics of procedure calling:

1. Put parameters where the
called procedure can find them

2. Transfer control to the procedure
3. Acquire the needed storage for procedure variables
4. Perform the expected calculation
5. Put the result where the caller can find them
6. Return control to the point just after where it was called

8

09/18/2017 Comp 411 - Fall 2017

Register usage conventions

9

By convention, the
ARM registers are
assigned to specific
uses and names. These
are supported by the
assembler, and
higher-level languages.
We’ll use these names
increasingly. Why have
such conventions?

Register Use

R0-R3 First 4 function arguments.
Return values are placed in R0 and R1.

R4-R10 Saved registers. Must save before using
and restore before returning.

R11 FP - Frame pointer
(to access a procedure’s local variables)

R12 IP - Temp register used by assembler

R13 SP - Stack pointer
Points to next available word

R14 LP - Link Pointer (return address)

R15 PC - program counter

09/18/2017 Comp 411 - Fall 2017

Basics of Calling

LDR R0, x
LDR R1, y
BL GCD
STR R0, z

halt: B halt

x: .word 35
y: .word 55
z: .word 0

10

GCD: CMP R0,R1
BXEQ LP
SUBGT R0,R0,R1
SUBLT R1,R1,R0
B GCDint gcd(a,b) {

 while (a != b) {
 if (a > b) {
 a = a - b;
 } else {
 b = b - a;
 }
 }
 return a;
}

int x = 35;
int y = 55;
int z;

z = gcd(x, y);

Here the assembly language
version is actually shorter
than the C/Java version.

09/18/2017 Comp 411 - Fall 2017

That was a little too EASY

11

LDR R0, x
BL fact
STR R0, y

halt: B halt

x: .word 5
y: .word 0

fact: CMP R0,#1
BXLE LP

 MOV R1,R0
SUB R0,R0,#1
BL fact
MUL R0,R0,R1
BX LP

int fact(x) {
 if (x <= 1)
 return x;
 else
 return x*fact(x-1);
}

int x = 5;
int y;

y = fact(x);

This time, things are really messed up.

The recursive call to fact() overwrites
the value of x that was saved in R1.

To make a bad thing worse,
the LP is also overwritten.

I knew there was a reason
that I avoid recursion.

09/18/2017 Comp 411 - Fall 2017

Next Time

● Stacks
● Contracts
● Writing

serious code

12

