=N
ASSEMBLING THE LAST FEW BITS L]

GETTING LUCKY WHEN SHE

7 ALLEN, T KNEW T WAS
WHISPERED THOSE 3 MAGIC

o R Multiplication
] O I L .
[SOME ASSEmMBLY L
REQUIRED Division
.--” -

Block transfers

Coaliing Procedur'es

UGa@e conventions

Grades For Labs | and 2 should be Pos’red.

Problem Set # due miclniath Wed (9/2.0)

BREIER 2013 “eotise

09/18/2.017 ComP 41 - Fall 2017

SOME "oDD” \wwsTevCTIONS

The ARM mulJriPIy instruction was kind of an af—’rer”rhouﬂhf
It is ‘shoe-horned-in' using uhused R-type encodingc;.

4 3 4 1 4 4 4 4
R type: 1110 000 O00A |S Rd Rn Rs 1001 Rm
A 4 Also, notice that for some odd reason, they
You may recall that } d th of the Rd and Rn field
) . . swapped the meaning e Kd and Kn Tields
R-type instructions with
included shifts always

required bit 4 to be ‘0"
I bit 4 is a ', severa new
instructions emerge.

Al operands of multiply \

e X (if A ==
integers. MUL Rd,Rm,RS ’ Rd = Rm*Rs
if A ==
_ MLA Rd,Rm,Rs,Rn ; Rd = Rm*Rs+Rn

09/18/2.017 Comp 4 - Fal 2017 2

=N
DIVISION, NOT ONE ﬂi_"

S ——
ARMv7 does not Provide a DIVIDE instruction. Reasons?
. Divisions often require multiple cycles

2. Inte division id s, Quotient— 015
ﬁe‘f Ivisions Prow-e two results DM; r; g

a quotient and a remainder 0
L Dividend 48

3. Divisions Iay khowh constants can be 32
imPIemenJreol via multiplication ond shitts E

Remainder ——» 7

CalculatorSoup.com

4. |n PloaJring point I/y is easy to compute,
so the Proclchr x/y = x*(l/y) is often
the implementation of choice

5. Usually implemented as a function

09/18/2.017 Comp 4l - Fall 2017 3

ANOTHER "6DD” INSTRUCTION i

ARM also Providec; an instruction that swaps the contents
ofF registers with a memory location

4 3 4 1 4 4 4 4
Rtype:| 1110 | 000 | 10B0 |0| Rn Rd | 0000 |[1001| Rm

Swap is used to implement
synchronizaﬁon primitives
that are used by multiple
processors and threads.
The instruction is ‘atomic"

}; Rd and Rn are back in their usual places

The 'B* bit when ‘0' _
swaps a word, and when ./

. i swaps a byte SWP Rd,Rm, [Rn] ; Rd <-- Memory[Rn]
* Memory[Rn] <-- Rm

09/18/2.017 Comp 41 - Fall 2017

=

[

——

BLOCK TRANSFERS

Arm Provides a useful instruction for storing multiple registers into

memory sequentially. It shares some commonality with the LDR and
STR instructions.

4 3 11 11 1 4 16
B type:| 1110 100 (P|{U[O|1]|L Rn Register Vector

L P U | Instruction

1 0 1 | LDMFD Rn!, {list of regs} ;save regs to increasing addresses

O | 1 O SRMFD Rn!,{list of regs} ; load regs from decreasing addresses

Examples:
SRMFD SP!, {R4,R5,R6,LP}
LRMFD SP!, {R4,R5,R6,PC}
09/18/2.017 Comp 4l - Fall 2017 5

—_ N
CONDITIONAL EXECUTION 1111

—

Recal how branch instructions could be executed cor\diﬂonally, based on the
status Plaas set From some previous instruction. Also recall that, whie
condition Plaas are generaly set using CMP or TST instructions, many
instructions con be used to set status P\aﬁs. Actually, there is £l symmetry.
Most instructions, in addition to branches can dlso be executed concfrl'ionall)/.

R type: | Cond 000 Opcode S Rn Rd Shift | L]0/ Rm
| type: | Cond 001 Opcode S Rn Rd Rotate Imm8
D type:| Cond 010 |1|U|O0|O|L Rn Rd Imm12
X type:| Cond 011 (1 |1U|0|0]|L Rn Rd Shift k 0| Rm
B type:| Cond 101 | L Imm24
0000 - EQ - equals
0001 - NE - not equals 1000 - HI - higher (unsigned)
0010 - CS - carry set 1001 - LS - lower or same (unsigned)
0011-CC - carry clear 1010 - GE - greater or equal
) (signed)
0100 - MI - negative 1011 - LT - less than (signed)
0101 - PL - positive or zero 1100 - GT- greater than (signed)
0110 - VS - overflow 1101 - LE- less than or equal (signed)

U111 - VC - no overflow 1110 - “” - always
09/18/2.017 Comp 4l - Fall 2017 G

P\
EXAMPLE OF CONDITIONAL EXECUTION @

CMP R3,R4 ; if (14 >= j)
BLT else ;
SUB RO,R3,R4 ; X =1-7;
B endif : else
else: SUB RO,R4,R3 X =3 - 1i;
endif:
CMP R3,R4 X =(i>=3)?241i-3 3 - 1;

SUBGE RO,R3,R4 ;

SUBLT RO,R4,R3 ;

This code is not only
shorder, but i is much
" faster. Generally, $aken
@ Lranches are slower than

ALV instructions on ARM.

09/18/2.017 Comp 4l - Fall 2017 -

=N
SUPPORTING PROCEDURE CALLS L]

—

Fuhctions and Procedurecs are essential components of code reuse.
The adlso dlow code to be oraanizecl into modules. A key component
ofF of Proceclures is that they clean up behind themselves.

[l

Basics of Procedure caling

. Put parameters where the

called procedure can Find them
Transker control to the procedure
Acquire the needed storage for procedure variables
Perform the expected calculation

Put the result where the caller can find them

© Ul & w

Return control to the point just ofter where it was called

09/18/2.017 Comp 4l - Fall 2017 8

REGISTER USAGE CONVENTIONS L]

By convention, the
ARM reﬂic;Jrerc; are
assiﬂned to specif—ic
uses and names. These
are supported by the
assembler, and
hiﬂher—level Ianﬂuaaes.
We'll use these hames
increasingly. Why have
such conventions<

09/18/2.017

Register

RO-R3

R4-R10

R11

R12

R13

R14

R15

Comp 41 - Fall 2017

Use

First 4 function arguments.
Return values are placed in RO and R1.

Saved registers. Must save before using
and restore before returning.

FP - Frame pointer
(to access a procedure’s local variables)

IP - Temp register used by assembler

SP - Stack pointer
Points to next available word

LP - Link Pointer (return address)

PC - program counter

Basics oF CALLING

LDR RO,

LDR R1,

BL GCD

STR RO, z
halt: B halt
X: .word 35
y: .word 55
Z: .word ©
09/18/2.017

X GCD:
/

int gcd(a,b) {
|

while (a !'= b) {
if (a > b) {
a=a-b;
} else {
b=Db-a
}
}
return a;
}
int x = 35;
int y = 55;
int z;
z = ged(x, y);

ComP 41 - Fall 2017

CMP
BXEQ
SUBGT
SUBLT

1Ll

—

RO, R1

LP

RO, RO, R1
R1,R1,R0
GCD

Here the assembly language
version is actually shorter

" than the C/Java version.

U4

THAT WAS A LITTLE TO06 EASY i

LDR RO, x/>fact: CMP RO, #1
BL fact BXLE LP

STR RO, vy MOV R1, RO
halt: B halt SUB RO, RO, #1
45 BL fact
X. .WOr
MUL RO, RO, R1
y: .word © BX Lp
int fact(x) {
if (X <= 1) This time, things are really messed up.
return X; The recursive call fo fack() overwrites
else the value of x that was saved in RI.
return x*fact(x-1); A To make a bad thing worse,
} _‘ the LP is also ove'n?er-*en. ‘
int x = 5; I knew there was a reason
int y; that I aveid recursion.
y = fact(x);

09/18/2.017 Comp 41 - Fall 2017 1

NEXT TIME

09/18/2.017

® Stacks
e Contracts
© \Nri’rina

serious code

Comp 41 - Fall 2017

