
09/13/2017 Comp 411 - Fall 2017

Status Flags

Now it is time to discuss what status flags are available. These five
status flags are kept in a special register called the Program Status
Register (PSR). The PSR also contains other important bits that
control the processor.

● N - set if the result of an operation is negative
(Most Significant Bit (MSB) is a 1)

● Z - set if the result of an operation is “0”
● C - set if the result of an operation has a carry out of it’s MSB
● V - set if a sum of two positive operands gives a negative result, or

if the sum of two negative operands gives a positive result
● Q - a sticky version of overflow created by instructions that

generate multiple results (more on this later on).

1

09/13/2017 Comp 411 - Fall 2017

Comparison InstruCtions

These instructions modify the status flags, but leave the contents of
the registers unchanged. They are used to test register contents, and
they must have their “S” bit set to “1”. They also don’t modify their Rd,
and by convention, Rd is set to “0000”.

CMP R0,R1

CMN R2,R3

TST R4,#8

TEQ R5,#1024

2

PSR flags set for the result R2 + R3

PSR flags set for the result R4 & 8

PSR flags set for the result R5 ^ 1024

PSR flags set for the result R0 - R1

S

09/13/2017 Comp 411 - Fall 2017

Register Transfer

These instructions are used to transfer the contents of one register
to another, or simply to initialize the contents of a register. They
make use of only one operand, and, by convention, have their Rn field
set to “0000”.

MOV R0,R3

MOV R1,#4096

MVN R2,R4

MVNS R3,#1

3

R0 ← R3

R1 ← 4096

R2 ← - R4

R3 ← - 1, and set PSR (Z = 0, N = 1, V = 0, C = 0)

09/13/2017 Comp 411 - Fall 2017

ARM Shift Operations

A novel feature of ARM is that all data-processing instructions can
include an optional “shift”, whereas most other architectures have
separate shift instructions. This is actually very useful as we will see
later on. The key to shifting is that 8-bit field between Rd and Rm.

4

000 Opcode S Rn1110 Rd Shift RmR type:

4 3 4 1 4 4 5 2 1 4
L
A

0

Shift
Amount
0-31 bits

Shift Type
00 - logical left
01 - logical right
10 - arithmetic right
11 - rotate right

09/13/2017 Comp 411 - Fall 2017

Left Shifts

Left Shifts effectively multiply the contents of a
register by 2s where s is the shift amount.

MOV R0,R0,LSL 7

Shifts can also be applied to the second operand of any
data processing instruction

ADD R1,R1,R0,LSL 7

5

0000 0000 0000 0000 0000 0000 0000 0111R0 before:

0000 0000 0000 0000 0000 0011 1000 0000R0 after:

= 7

= 7 * 27 = 896

09/13/2017 Comp 411 - Fall 2017

Right Shifts

Right Shifts behave like dividing the contents of a register
by 2s where s is the shift amount, if you assume the
contents of the register are unsigned.

MOV R0,R0,LSR 2

6

0000 0000 0000 0000 0000 0100 0000 0000R0 before:

0000 0000 0000 0000 0000 0001 0000 0000R0 after:

= 1024

= 1024 / 22 = 256

09/13/2017 Comp 411 - Fall 2017

Arithmetic Right Shifts

Arithmetic right Shifts behave like dividing the contents of
a register by 2s where s is the shift amount, if you
assume the contents of the register are signed.

MOV R0,R0,ASR 2

7

1111 1111 1111 1111 1111 1100 0000 0000R0 before:

1111 1111 1111 1111 1111 1111 0000 0000R0 after:

= -1024

= -1024 / 22 = -256

This is Java’s “>>>” operator,
LSR is “>>” and LSL is “<<”

09/13/2017 Comp 411 - Fall 2017

Rotate RiGHT Shifts

Rotating shifts have no arithmetic analogy. However, they don’t lose
bits like both logical and arithmetic shifts. We saw rotate right shift
used for the I-type “immediate” value earlier.

MOV R0,R0,ROR 2

Why no rotate left shift?

● Ran out of encodings?
● Almost anything Rotate lefts can do ROR can do as well!

8

0000 0000 0000 0000 0000 0000 0000 0111R0 before:

1100 0000 0000 0000 0000 0000 0000 0001R0 after:

= 7

= -1,073,741,823

Java doesn’t have an
operator for this one.

09/13/2017 Comp 411 - Fall 2017

Addressing Modes and Branches

● More on Immediates
● Reading and Writing Memory
● Registers holding addresses
● Pointers
● Changing the PC

○ Loops
○ Labels
○ Calling Functions

9

09/13/2017 Comp 411 - Fall 2017

Why Built-in Constant operands?
(Immediates)

● Alternatives? Why not? Do we have a choice?
○ put constants in memory (was common in older instruction sets)

● SMALL constants are used frequently (50% of operands)
○ In a C compiler (gcc) 52% of ALU operations involve a constant
○ In a circuit simulator (spice) 69% involve constants
○ e.g., B = B + 1; C = W & 0xff; A = B - 1;

● ISA Design Principle:
Make the common case easy
Make the common case fast

10

001 Opcode S Rn1110 Rd Imm8RotateI type:

4 3 4 1 4 4 4 8

How large of constants
should we allow for? If
they are too big, we won’t
have enough bits leftover
for the instructions or
operands.

09/13/2017 Comp 411 - Fall 2017

Rotations to make constants

Recall that immediate constants are encoded in two parts:
Thus, only a subset of 4096 32-bit numbers can
be used directly as an
operand.
There are actually
only 3073 distinct
constants. There are
16, “0s” and 4 ways to
represent all powers 2.

From last time, how
might you encode 256?

11

immRotate
 4 8

1100 00000001 1101 00000100

1110 00010000 1111 01000000

09/13/2017 Comp 411 - Fall 2017

Moves and ORs

We can load any 32-bit constant using a series of instructions,
one-byte at a time.

MOV R0,#85 ; 0x55 in hex
ORR R0,R0,#21760 ; 0x5500 in hex
ORR R0,R0,#5570560 ; 0x550000 in hex
ORR R0,R0,#1426063360 ; 0x55000000 in hex

But there are often better, faster, ways to load constants, and the
assembler can figure out how for you, even if it needs to generate multiple
instructions.

MOV R0,=1431655765 ; 0x55555555 in hex

12

Note that an
equal sign is used
here rather than
a hashtag.

09/13/2017 Comp 411 - Fall 2017

Load and Store Instructions

ARM is a “Load/Store architecture”. That means that only a special
class of instructions are used to reference data in memory. As a
rule, data is loaded into registers first, then processed, and the
results are written back using stores. Load and Store instructions
have their own format:

13

010 L Rn1110 Rd Imm12D type:

4 3 1 1 1 1 1 4 4 12

00U1

011 L Rn1110 RdX type: 00U1 Rm

4 3 1 1 1 1 1 4 4 5 2 1 4

Shift L
A

0

L is a “1” for a Load
and “0” for a Store

Why does a “1” imply an immediate operand for
ALU types, but “0” for Loads and Stores?

If U is “0” subtract
offset from base,

otherwise add them.

The same “shift” options
that we saw for the data

processing instructions

09/13/2017 Comp 411 - Fall 2017

Load and Store OPtions

LDR Rd,[Rn,#imm12]

STR R0,[R1,#-4]

LDR R2,[R3]

STR R4,[R5,R6]

LDR R4,[R5,-R6]

STR R4,[R5,R4,LSL 2]

14

Rd ← Memory[Rn + imm12]
Rd is loaded with the contents of memory at the address found by
adding the contents of the base register to the supplied constant

Memory[R1 - 4] ← R0
Offsets can be either added or subtracted, as indicated by a negative sign

If no offset is specified it is assumed to be zero

The contents of a second register can be used as an
offset rather than a constant (using the X-type format)

Register offsets can be either added or subtracted, like
constants

Register offsets can also be optionally shifted, which is
great for indexing arrays!

ARM’s load and store instructions are versatile. They provide a wide
range of addressing modes. Only a subset is shown here.

09/13/2017 Comp 411 - Fall 2017

Changing the PC

The Program Counter is special register (R15) that
tracks the address of the next instruction to be fetched.
There are special instructions for changing the PC.

15

101 LCond Imm24B type:

4 3 1 24

0000 - EQ - equals
0001 - NE - not equals
0010 - CS - carry set
0011 - CC - carry clear
0100 - MI - negative
0101 - PL - positive or zero
0110 - VS - overflow
0111 - VC - no overflow
1000 - HI - higher (unsigned)
1001 - LS - lower or same (unsigned)
1010 - GE - greater or equal (signed)
1011 - LT - less than (signed)
1100 - GT - greater than (signed)
1101 - LE - less than or equal (signed)
1110 - “” - always

Branches are often
executed conditionally
based on the PSR state
set by some previous
instruction like CMP or
TST.

The “L” bit causes
PC+4 to be

saved In
LP (R14).

09/13/2017 Comp 411 - Fall 2017

Branch using ReGISTERs

The standard Branch instruction has a limited range, the 24-bit signed
2’s complement immediate value is multiplied by 4 and added to the
PC+8, giving a range of +/- 32 Mbytes. Larger branches make use of
addresses previously loaded into a register using the BX instruction.

16

000Cond 1 0010 1111 1111 1111 0001R type:

4 3 21 4

Rn

0000 - EQ - equals
0001 - NE - not equals
0010 - CS - carry set
0011 - CC - carry clear
0100 - MI - negative
0101 - PL - positive or zero
0110 - VS - overflow
0111 - VC - no overflow
1000 - HI - higher (unsigned)
1001 - LS - lower or same (unsigned)
1010 - GE - greater or equal (signed)
1011 - LT - less than (signed)
1100 - GT - greater than (signed)
1101 - LE - less than or equal (signed)
1110 - “” - always

If the condition is true, the PC is
loaded with the contents of Rn.

BTW, BX is encoded as a TEQ
instruction with its S field set to “0”

09/13/2017 Comp 411 - Fall 2017

Branch Examples

BNE else

BEQL func

BX LR

loop: B loop

17

If some previous CMP instruction had a non-zero result (i.e. making
the “Z” bit 0 in the PSR), then this instruction will cause the PC to be
loaded with the address having the label “else”.

If some previous CMP instruction set the “Z” bit in the PSR, then this
instruction will cause the PC to be loaded with the address having the
label “func”, and the address of the following instruction will be saved
in R14.

Loads the PC with the contents of R14.

An infinite loop

09/13/2017 Comp 411 - Fall 2017

A simple Program

; Assembly code for
; sum = 0;
; for (i = 0; i <= 10; i++)
; sum = sum + i;

MOV R1,#0 ; R1 is i
MOV R0,#0 ; R0 is sum

loop: ADD R0,R0,R1 ; sum = sum + i
ADD R1,R1,#1 ; i++
CMP R1,#10 ; i <= 10
BLE loop

halt: B halt

18

09/13/2017 Comp 411 - Fall 2017

Load and Stores in action

An example of how loads and stores are used to access arrays.

Java/C:

int x[10];
int sum = 0;

for (int i = 0; i < 10; i++)
 sum += x[i];

19

Assembly:

.align 4
x: .space 40
sum: .word 0

MOV R0,=x ; base of x
MOV R1,=sum
LDR R2,[R1]
MOV R3,#0 ; R3 is i

for: LDR R4,[R0,R3 LSL 2]
ADD R2,R2,R4
ADD R3,R3,#1
CMP R3,#10
BLT for
STR R2,[R1]

09/13/2017 Comp 411 - Fall 2017

Next time

We’ll write more Assembly programs

Still some loose ends

● Multiplication? Division? Floating point?

20

