p—_ %
STATVS FLAGS 1N

Now it is time to discuss what status -Plags are avaiadble. These Five
status P\aas are kept in a special register caled the Program status
Reginger (PSR). The PSR also contains other impor-tant bits that
control the processor.

o N - set it the result of an operation is negative
(Most significant Bit (MSB) is a 1)

® Z - set ik the result of an operation is "0

o C - set ik the result of an operation has a carry out of its MsB

e V -setikasum of two positive operands gives a negative result, or
it the sum of two negotive operands gives a positive result

® Q@ - a sticky version of overflow created by instructions that
generate multiple results (more on +his later on).

09/13/2.0I7 ComP 41 - Fall 2017

p—_ %
CoMPARISON TNSTRUCTIONS L]

—

These instructions moclilly the status P\aas, but leave the contents of
the regsters unchanaeol. They are used to test register contents, ond
. They dlso don't mocliPy their Rd,

+hey must have their 'sS' bit set to

and by convention Rd is set to '0000" S
4 3 4 (1) 4 4 8 4
R type: 1110 000 | Opcode | 1 Rn 0000 | 00000000 Rm
| type: 1110 001 | Opcode | 1 Rn 0000 Rotate Imm8

A— PSR Hags set For the result RO - R t g

CMP RO,RT -k i0- e

\N— PSKFIagsse‘l"PorﬂteresuH R2 + R3

CMN R2,R3 7K

\N— PSKFIagsse‘l"PorﬂteresuH R4 & 8

TST R4,#8 X

— PSR Flags set for the resut R5 " 1024

TEQ R5, #1024 %

09/13/2.017 Comp 4 - Fal 2017 2

e\
REGISTER TRANSFER IT!TI

—

These instructions are used to transker the contents ok one register
to another, or simply to initidlize the contents of a register. They
moke use ok only one operand, and, by convention have their Rn Field
set to '0000"

4 3 4 1 4 4 8 4
O < R3 R type: 1110 000 | Opcode | S| 0000 Rd 00000000 Rm

s —KR
MOV R@] R3 /8 | type: 1110 001 | Opcode | S| 0000 Rd Rotate Imm8

L 1101 - MOV
8 — RI < 409 g

MOV R1,#4096°%

s —R2 «<— -R4

MVN R2,R4-X

N—R3 <« -|andsetPsR(Zz=0N=LV=0C=0)

MVNS R3,#1 -X

09/13/2.017 Comp 4l - Fall 2017 3

p—_ %
ARM SWIFT OPERATIONS 1]

—

A novel Feature of ARM is that all data-processing instructions can
include an optional ‘shit-t', whereas most other architectures have
separate shitt instructions. This is actudlly very useful as we wil see
later on. The key to shilting is that 8-bit tield between Rd and Rm

4 3 4 1 4 4 5 2 1 4
R type: | 1110 000 | Opcode | S Rn Rd Shift (L]0 Rm

Shift Type

00 - logical left
01 - logical right
10

11

Shift - arlthme_tlc right
- rotate right
Amount

0-31 bits

09/13/2.017 Comp 4l - Fall 2017 4

LEFT SWIFTS 1]

Left shifts ef—f—ecﬂvely multiply the contents of a
register Iay 2° where s is the shirt amount.

MOV RO,RO,LSL 7

RO before: | 9000 0000 0000 0000 0OOOB 0OBO 00O 0111 (=7
=
RO after: | 9000 0000 0000 0000 0000 0011 1000 0000 [=7 *2" =896

Shifts can adlso be aPPlied to the second oPer'ancl of any
data processing instruction

ADD R1,R1,R0O,LSL 7/

09/13/2.017 Comp 4l - Fall 2017 5

RIGHT SHIFTS ﬁ

—

Right shifts behave like c/ividirlg the contents of a register
by 2° where s is the shift amount, if you assume the
contents of the real;’rer are unsigned

MOV RO,RO,LSR 2

RO before: 0000 00VO 0VBO VOO BOPO B100 0OVB 0060 | = 1024
—— 3
RO after: D0O0O 000D 0DOO 0PDO 0ODO DOO1 DOOO VOO | = 1024 /22 =256

09/13/2.017 Comp 4l - Fall 2017 G

p—_ %
ARITHMETIC RIGHT SHIFTS L]

—

Arithmetic right Shifts behave like c/ivic/ing the contents of
a register by 2° where s is the shift amount, if you
assume the contents of the reaierer are signec{

MOV RO, RO,ASR 2

RO before: [1111 1111 1111 1111 1111 1100 0000 0006
—— 3
RO after: | 1111 1117 1111 1111 1111 1111 0000 0000

-1024

-1024 | 22 = -256

This is Java's “>>>" operator,
LSR is “>>" and LSL is "<<”
/

U4

09/13/2.0I7 Comp 41 - Fall 2017

ROTATE RIGHT SWIFTS 1]

KoJraJrina shifts have no arithmetic analoay. However, +hey don't lose
bits like both logjcal and arithmetic shifts. We saw rotate right shif+
used for the -type "immediate" value earlier.

MOV RO, RO,ROR 2

RO before: | 90600 0000 0006 0000 0BOO BOBO 00O BT111|(=7

RO after: iee 0000 00GO 00O 6RO 00RO BB 6001 | =-1,073,741,823

Java doesn't have an
/apera'lor for this one.

\Nhy no rotate left shifFt? o

® Ron out of er\codings?
o Almost anything Rotate lefts can do ROR can do as well

09/13/2.017 Comp 4l - Fall 2017 8

ADDRESSING MODES AND BRANCHES I

More on Immediates

Readin@ and Writing Memory
Registers holding addresses
Pointers

Chanainﬂ the PC

O l_ooPcs
o Labels
O Calliha Functions

09/13/2.017 Comp 4l - Fall 2017 9

WHY BUILT-IN CONSTANT OPERANDS?

(IMMEDIATES)
4 3 4 1 4 4 4 8
| type: | 1110 001 | Opcode | S Rn Rd Rotate Imm38

e Alternatives? V\lhy hot? Do we have a choice?
O put constants in memory (was common in older instruction sets)

e SMALL constants are used Prequehﬂy (50% of operands)
O IhaC comPiIer' (acc) 52% of ALU oPer'aJrions involve a constant

O In a circuit simulator (spice) 9% involve constants
o e@.,B=B+1;C=W&@xff;A=B—1;

How large of constants
should we allow fore If

. . .) +hey are oo big, we won't
® [SA Design Principle: have enough bis leflover

for the instructions or

Make 'H'Te common caseé eagy / operands.
Make the common case fast

09/13/2.0I7 Comp 41 - Fall 2017

ROTATIONS TO MAKE CONSTANTS

8
imm

Range

4
Rotate

Recall that immediate constants are encoded in +wo par-ts:

Thus, only a subset ofF 409G 32-bit humbers can

Bits Used

Rotate

be used alirecﬂy as an

0-255

o [LIPTIITE TP R

Q
S

2=
S o O
P LG
c.m.n
S5 F
0
< £ R £
- Q G
S O o 4+
U 0
2925
O -~ O V

v LT P LT T I 2147483648 - 1073741887
2 QR TEET T PP PP P PL TP T L T) 2147483648 - 1870048207

s LEEEEET TP TAE LA T T LT LT T I 2147483648 - 2080374787
4 LT LT TP PRI T PT TP 1] |]-2147483648 - 2130706432

s | EEEEEEEE LT ey
o [LA L T T ety

7 L e LT LT

4194304 - 1069547520

1048576 - 267386880

b, '0s" and 4 ways to

262144 - 66846720

reprec;er\Jr all powers 7.

65536 - 16711680

s LI T LTI T TTryy]
o [LLITTIT T FEEEEEEE LA LT

o [P IET LT PR LTI

16384 - 4177920

From last time, how

4096 - 1044480

1024 - 261120

w [T TP LT

miﬂhi' you encode 2502

| 1100 |00GBB001T| | 1101|00000100|

256 - 65280

2 [P e [T

64 - 16320

s [T T PR T L]

16 - 4080

w [T T PR LT

[1110]00070000] | 1111/01000000)|

4-1020

s LT T R]

09/13/2.017

MOVES AND ORS ﬁ

—

We can load any 32-bit constant using a series of instructions,
one—loere ot a time.

MOV RO, #85 ; Ox55 in hex
ORR RO, RO,#21760 ; Ox5500 in hex
ORR RO, RO, #5570560 ; Ox550000 in hex

ORR RO,RO,#1426063360 ; 0x55000000 in hex

But there are often better, Faster, ways to lood constants, and the
assembler can Piﬁure out how for you, even it it needs to generate multiple
instructions.

MOV RO,=1431655765 ; Ox55555555 in hex

Note that an
equal sign Is used

e
here rather than™~
a hashtag, gb

09/13/2.0I7 ComP 41 - Fall 2017 12

LoAD AND STORE INSTRUCTIONS i

ARM is a 'Load/Store architecture' That means that ohly a special
class ok instructions are used to reference data in memory. As a
rule, data is loaded into registers First, then processed, and the

results are written back using stores. _oad and Store instructions

have their owh format-

4 3 11 11 1 4 4 12
D type:| 1110 010 |1|U[0|0O|L Rn Rd Imm12

4~ Why does a *I” imply an immediate operand for
ALV {ypes, but “0° for Loads and Stores?

4 3 171 11 1 4 4 5 2 1 4
X type: 1110 011 1T1U|0]|O0|L Rn Rd Shift k 0 Rm
IfV is “0" subtract Lis a "l for a Load The same “shif}” options
offset from base,~— . \' - and “0” for a Store +hu: wems:w for +:z+du"|"a

otherwise add them. % & & processing instructions

09/13/2.0I7 Comp 41 - Fall 2017 3

LoAD AND STORE OPTIONS M

ARM’'s load and store instructions are versatie. They Provicle a wide
ronge of addressiha modes. Only a subset is shown here.

_ A— Rd Memory[Kn+ immi2.]
LDR Rd, [Rn,#1mm12] /g Rd is loaded with the contents of memory at the address found by
adding the contents of the base regster to the supplied constant

— M (Rl - 4] — RO
STR R@,[R1,#‘4])g O&msewgmn:eem\eraddedorsuHraded,asimﬁcﬁedbyanegaﬁves%n

LDR RZ’[R3]/xg/|3noo%e+isspeci$iedﬁisassumed+obezero

A— The contents of ond ister can be used as an
STR R4, [RS,R6]/§ ocﬁgerrﬂ:nﬁmm(us;gmxﬂpea;«m)

LDR R4, [R5, -R6] "?/ izgz*:n:g%eﬂcmbeemeraddedorswh‘adedﬁke

STR R4, [RS5,R4, LSL 2] 5 Regoter offsets ca deo be cptony shfted which »

09/13/2.017 Comp 4l - Fall 2017 14

e\
CHANGING THE PC 1]

——

The Program Counter is 9Pecial re@ic;Jrer (RI5) that
tracks the address of the next instruction to be fetched.
There are special instructions For changing the PC.

4 3 1 24
B type:| Cond 101 |L Imm24
0000 - EQ -equals . Branches are of}en
o001-NE oot eq“irs' . - executed conditionally
) - carry se . The “L” bit causes based on the PSR

0011-CC - carry clear ‘. PCal +o be aseq on the s-l-a-l-e
0101-PL - positive or zero .. saved In instruction like CMP o
0110 -VS - overflow pn LP (Rl'-l) Instrucrion i r

) 0111-ve - no overflow . TST.
1000 - HI - higher (unsigned) . /
1001 - LS - lower or same (unsigned) \ —
1010 - GE - greater or equal (signed) \. ~‘
1011 -LT - less than (signed) ?
1100 - GT - greater than (signed)
1101 - LE - less than or equal (signed)
1110 - “” - always

~—

09/13/2.0I7 Comp 41 - Fall 2017 5

—

BRANCH VSING REGISTERS M

——

The standard Branch instruction has a limited range, the 2.4-bit siﬁned

2's complement immediote value is mu|+iP|iea| lay 4 and added to the

PC+8, giving a ronge of +/- 32 Mby’res. Larger braonches make use of

addresses previously loaded into a register using the BX instruction.

4 3 21 4
R type: | Cond 000 1T 0010 1111 1111 1111 00601 Rn
+ (0000-EQ -equals

88%) 25 22;’:;“3“;'3 If the condition is true, the PCis
0011-CC - carry clear loaded with the contents of Rn.
0100 - MI - negative
0101 - PL - iti
0110 - VS - 23::';'\;5\’01' zero RTW, BX is encoded as a TEQ

L 0111-VC -no overflow instruction with Hs S field set 4o “0”
1000 - HI - higher (unsigned) _—
1001 - LS - lower or same (unsigned)
1010 - GE - greater or equal (signed) ‘
1011 - LT - less than (signed)
1100 - GT - greater than (signed)
1101 - LE - less than or equal (signed)

09/13/2.017

1110 -

- always

Comp 41 - Fall 2017

BRANCH EXAMPLES

A— & some previous CMP instruction had a non-zero result (ie. making
BNE else /g the 'Z" bit O in the PSR), then this instruction will cause the PC to be
loaded with the address having the label ‘else".

BEQL funC ,5/lPsomePreviousCMPhsh’ucﬁonsdH\e‘Z.‘thwPSK,ﬂnen%is
/g instruction wil cause the PC to be loaded with the address having the

label ‘Func’, and the address of the f—ollowhg instruction wil be saved
in Ri4.

A— Loads the PC with the contents of Ri4-
BX LR X

loop: B loop /’g/"”“‘:‘""'e'“"

09/13/2.017 Comp 41 - Fall 2017

A SIMPLE PROGRAM

=)

- e

Assembly code for

* sum = 0;

for (i = ©; 1 <= 10; i++)
, sum = sum + 1;

- e

MOV R1, #0 » R1 is 1
MOV RO, #0 * RO 1s sum
loop: ADD RO, RO, R1 sum = sum + 1
ADD R1,R1, #1 © 14+
CMP R1,#10 i <= 10
BLE loop
halt: B halt

09/13/2.0I7 ComP 41 - Fall 2017 18

LoAD AND STORES (N ACTION

An example of how loads and stores are used to access arrays.

Java/C-

int x[10];
int sum = O;

A%emlaly:

.align 4

X : .Space 40
sum: .word ©

for (int 1 = 0; i < 10; i++)

sum += x[1i];

09/13/2.017

MOV
MOV
LDR
MOV
for: LDR
ADD
ADD
CMP
BLT
STR

Comp 41 - Fall 2017

RO, =X ¢ base of x
R1, =sum

R2, [R1]

R3, #0 : R3 is 1
R4,[RO,R3 LSL 2]
R2,R2,R4

R3, R3, #1

R3, #10

for

R2, [R1]

NEXT TIME

We'll write more Ac;semlaly progroms

SHtill some loose ends

° MuIJriPIicaJrion? Division? Floaﬁnﬂ Poih’r?

09/13/2.017

DILBERT® by Scott Adams

DHLBERT: £4989 Linfted Featurs Syndicate, inc.

WHEN 1 STARTED
PROGRAMMING, LWJE DIDNT
HANE ANY OF THESE

51557 "ICONS" AND
"WIMNDOWS.”

(

=

SAgiees D THT Ui Fasiurs Dpasie, i,

1

ALL WE HAD WERE ZEROS
AND ONES -- AND
JOMETIMES WE DIDN'T
EVEN HAVE ONES.

1 WROTE AN
ENTIRE
DATABASE
FROGRAN
USING ONLY
ZERDS.

YOU HAD
ZEROST LIE
HAD TO USE
THE LETTER
0"

ComP 41 - Fall 2017

IO, 80 2dy

1"d S00° 0N #Z:9

=)

20

