
09/11/2017 Comp 411 - Fall 2017

Instruction Set Architecture (ISA)

Encoding of instructions raises some interesting choices…
● Tradeoffs: performance, compactness, programmability
● Uniformity. Should different instructions

○ Be the same size (number of bits)?
○ Take the same amount of time to execute?
○ Trend: Uniformity. Affords simplicity, speed, pipelining.

● Complexity. How many different instructions? What level
operations?
○ Level of support for particular software operations: array

indexing, procedure calls, “polynomial evaluate”, etc
○ “Reduced Instruction Set Computer”

(RISC) philosophy: simple instructions, optimized for speed
● Mix of Engineering & Art…

1

09/11/2017 Comp 411 - Fall 2017

ARM7 Programming Model
A representative RISC machine

In Comp 411 we’ll use a subset of
the ARM7 core Instruction set as
an example ISA.

ARM7 uses byte memory
addresses. However, each
instruction is 32-bits wide, and
must be aligned on a multiple of
4 (word) address. Each word
contains four 8-bit bytes.
Addresses of consecutive
instructions (words) differ by 4.

2

Processor State
(inside the CPU)

Main Memory

0123

(4 bytes)

32 bit “words”

031

next instruction

0
4
8
16

20

Addresses
R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12

R13 (SP)
R14 (LR)
R15 (PC)

CPSR

Fetch/Execute loop:
● fetch Mem[PC]
● PC = PC + 4†

● execute fetched instruction
(may change PC!)

● repeat!

09/11/2017 Comp 411 - Fall 2017

ARM7 Memory Nits

● Memory locations are addressable in different sized chunks
○ 8-bit chunks (bytes)
○ 16-bit chunks (shorts)
○ 32-bit chunks (words)
○ 64-bit chunks

(longs/doubles)
● We also frequently need

access to individual bits!
(Instructions help with this)

● Every BYTE has a unique address
(ARM is a byte-addressable machine)

● Most instructions are one word
● We will consider the predominant “little-endian” ARM.

3

012 3
4567

word
Addr

0:
4:
8:
12:

891011
12131415

byte3 byte2 byte1 byte0

short2 short0

long0

long8

31 30 29 … … 4 3 2 1 0

09/11/2017 Comp 411 - Fall 2017

ARM Register Nits

● There are 16 named registers [R0, R1, …. R15]

● The operands of most instructions are registers

● This means to operate on a variables in memory you must:
○ Load the value/values from memory into a register
○ Perform the instruction
○ Store the result back into memory

● Going to and from memory can be expensive
(4x to 20x slower than operating on a register)

● Net effect: Keep variables in registers as much as possible!

● 3 registers are dedicated to specific tasks
(SP=R13, LR=R14, PC=R15), 13 are available for general use

4

09/11/2017 Comp 411 - Fall 2017

Basic ARM InstructionS

● Instructions include various “fields” that encode combinations of
Opcodes and arguments

● special fields enable extended functions (more in a minute)
● several 4-bit OPERAND fields, for specifying the sources and

destination of the operation, usually one of the 16 registers
● Embedded constants (“immediate” values) of various sizes,

The “basic” data-processing instruction formats:

5

000 Opcode 0 Rn1110 Rd 00000000 RmR type:

001 Opcode 0 Rn1110 Rd ImmShiftI type:

4 3 4 1 4 4 8 4

4 3 4 1 4 4 4 8

09/11/2017 Comp 411 - Fall 2017

R-type Data Processing

Instructions that process three-register arguments:

6

000 Opcode S Rn1110 Rd 00000000 RmR type:

4 3 4 1 4 4 8 4

0000 - AND
0001 - EOR
0010 - SUB
0011 - RSB
0100 - ADD
0101 - ADC
0110 - SBC
0111 - RSC
1000 - TST
1001 - TEQ
1010 - CMP
1011 - CMN
1100 - ORR
1101 - MOV
1110 - BIC
1111 - MVN

ADD R0, R1, R3

 0xE0810003

Is encoded as:
1110 0000 1000 0001 0000 0000 0000 0011

Simple R-type
instructions follow the
following template:

OP Rd, Rn, Rm
Later on we’ll introduce
more complex variants of
these “simple” R-type
instructions.

09/11/2017 Comp 411 - Fall 2017

I-type Data Processing

7

Instructions that process two registers and a constant:

7

001 Opcode S Rn1110 Rd Imm8RotateI type:

4 3 4 1 4 4 4 8

0000 - AND
0001 - EOR
0010 - SUB
0011 - RSB
0100 - ADD
0101 - ADC
0110 - SBC
0111 - RSC
1000 - TST
1001 - TEQ
1010 - CMP
1011 - CMN
1100 - ORR
1101 - MOV
1110 - BIC
1111 - MVN

RSB R7,R10,#49

 0xE26A7031

Is encoded as:
1110 0010 0110 1010 0111 0000 0011 0001

Simple I-type
instructions follow the
following template:

OP Rd,Rn,#constant
In the I-type instructions the second register
operand is replaced by a constant that is
encoded in the instruction

09/11/2017 Comp 411 - Fall 2017

I-type constants

ARM7 provides only 8-bits for specifying an immediate constant value.
Given that ARM7 is a 32-bit architecture, this may appear to be a
severe limitation. However, by allowing for a rotating shift to be
applied to the constant.

imm32 = (imm8 >> (2 * rotate)) | (imm8 << (32 - (2 * rotate)))

Example: 1920 is encoded as:

How would 256 be encoded?

8

000111101101
Rotate Imm8

= (30 >> (2*13)) | (30 << (32 - (2*13)))

= 0 | 30 * 64
= 1920

000000011100
Rotate Imm8

09/11/2017 Comp 411 - Fall 2017

Next Time

● We will examine more of the “basic” instruction types
and capabilities

● Result flags
● Program Status Registers

9

09/11/2017 Comp 411 - Fall 2017

Read the Instructions

.. when all else fails

● What do instructions do?
● How are instructions decoded?
● Uniformity and Symmetry
● Cramming stuff in
● CPU state

○ Condition codes
○ Program Status Register (PSR)

10

09/11/2017 Comp 411 - Fall 2017

A closer look at the opcodes

The Opcode field is common to both of the basic instruction types

11

000 Opcode S Rn1110 Rd 00000000 RmR type:

4 3 4 1 4 4 8 4

001 Opcode S Rn1110 Rd Imm8RotateI type:

0000 - AND
0001 - EOR
0010 - SUB
0011 - RSB
0100 - ADD
0101 - ADC
0110 - SBC
0111 - RSC
1000 - TST
1001 - TEQ
1010 - CMP
1011 - CMN
1100 - ORR
1101 - MOV
1110 - BIC
1111 - MVN

ARM data processing
instructions can be broken into
four basic groups:

● Arithmetic (6)
● Logic (4)
● Comparison (4)
● Register transfer (2)

We haven’t discussed the “S” field yet.
If set, it tells the processor to

retain some “state” after the
instruction has executed.

This “state” is in the
form of 5-flags.

Many instructions
(all we’ve seen thus
far) have a special

variant that sets the state flags.
In these variants the opcode has

an “S” appended.

09/11/2017 Comp 411 - Fall 2017

AritHmetic Instructions

ADD R3,R2,R12

SUB R0,R4,R6

RSB R0,R4,R2

ADC R1,R5,R8

SBC R2,R5,R7

RSC R1,R5,R3

12

R3 ← R2 + R12
Registers can contain either 32-bit unsigned values
or 32-bit 2’s-complement signed values.
R0 ← R4 - R6
Once more, either 32-bit unsigned values or 32-bit
2’s-complement signed values.
R0 ← - R4 + R2
The operands of the subtraction are in reversed order. It is called
“Reverse Subtract”. Why? The I-type version makes more sense.
R1 ← R5 + R8 + C
Where “C” is the Carry-out from some earlier instruction (usually an
ADDS or ADCS) as saved in the Program Status Register (PSR)
R2 ← R5 - R7 - 1 + C
Where “C” is the Carry-out from some earlier instruction (usually a
SUBS or SUBCS) as saved in the PSR
R1 ← - R5 + R3 - 1 + C
“Reverse Subtract” with a Carry. Usually a carry generated from a
previous RSBS or RSCS instruction.

1001101100000001A byte-sized example: 411 =

 -42 = 0010101000000000 11010101

C=1

10011011

1

01110001

+11111111

1

00000001

1=1-1+C

00000001

+

= 256 + 113 = 369

09/11/2017 Comp 411 - Fall 2017

Logic Instructions

13

0000 0000 0000 0000 1111 1111 0000 0000

0000 0000 0000 0000 1111 0000 1111 0000

R1:

R2:

0000 0000 0000 0000 1111 0000 0000 0000AND R0,R1,R2 R0:

0000 0000 0000 0000 1111 1111 1111 0000ORR R0,R1,R2 R0:

Logical operations on words
operate “bitwise”, that is they
are applied to corresponding
bits of both source operands.

0000 0000 0000 0000 0000 1111 1111 0000EOR R0,R1,R2 R0:
Commonly
called
“exclusive-or”

0000 0000 0000 0000 0000 1111 0000 0000BIC R0,R1,R2 R0:Called “Bit-clear”
R0 ← R1 & ~(R2)

09/11/2017 Comp 411 - Fall 2017

Status Flags

Now it is time to discuss what status flags are available. These five
status flags are kept in a special register called the Program Status
Register (PSR). The PSR also contains other important bits that
control the processor.

● N - set if the result of an opeartion is negative
(Most Significant Bit (MSB) is a 1)

● Z - set if the result of an operation is “0”
● C - set if the result of an operation has a carry out of it’s MSB
● V - set if a sum of two positive operands gives a negative result, or

if the sum of two negative operands gives a positive result
● Q - a sticky version of overflow created by instructions that

generate multiple results (more on this later on).

14

09/11/2017 Comp 411 - Fall 2017

Comparison InstruCtions

These instructions modify the status flags, but leave the contents of
the registers unchanged. They are used to test register contents, and
they must have their “S” bit set to “1”. They also don’t modify their Rd,
and by convention, Rd is set to “0000”.

CMP R0,R1

CMN R2,R3

TST R4,#8

TEQ R5,#1024

15

PSR flags set for the result R2 + R3

PSR flags set for the result R4 & 8

PSR flags set for the result R5 ^ 1024

PSR flags set for the result R2 - R3

09/11/2017 Comp 411 - Fall 2017

Register Transfer

These instructions are used to transfer the contents of one register
to another, or simply to initialize the contents of a register. They
make use of only one operand, and, by convention, have their Rn field
set to “0000”.

MOV R0,R3

MOV R1,#4096

MVN R2,R4

MVN R3,#1

16

R0 ← R3

R1 ← 4096

R2 ← - R4

R3 ← - 1

09/11/2017 Comp 411 - Fall 2017

ARM Shift Operations

A novel feature of ARM is that all data-processing instructions can
include an optional “shift”, whereas most other architectures have
separate shift instructions. This is actually very useful as we will see
later on. The key to shifting is that 8-bit field between Rd and Rm.

17

000 Opcode S Rn1110 Rd Shift RmR type:

4 3 4 1 4 4 5 2 1 4
L
A

0

Shift
Amount
0-31 bits

Shift Type
00 - logical left
01 - logical right
10 - arithmetic right
11 - rotate right

09/11/2017 Comp 411 - Fall 2017

Left Shifts

Left Shifts effectively multiply the contents of a
register by 2s where s is the shift amount.

MOV R0,R0,LSL 7

Shifts can also be applied to the second operand of any
data processing instruction

ADD R1,R1,R0,LSL 7

18

0000 0000 0000 0000 0000 0000 0000 0111R0 before:

0000 0000 0000 0000 0000 0011 1000 0000R1 after:

= 7

= 7 * 27 = 896

09/11/2017 Comp 411 - Fall 2017

Right Shifts

Right Shifts behave like dividing the contents of a register
by 2s where s is the shift amount, if you assume the
contents of the register are unsigned.

MOV R0,R0,LSR 2

19

0000 0000 0000 0000 0000 0100 0000 0000R0 before:

0000 0000 0000 0000 0000 0001 0000 0000R1 after:

= 1024

= 1024 / 22 = 256

09/11/2017 Comp 411 - Fall 2017

Arithmetic Right Shifts

Arithmetic right Shifts behave like dividing the contents of
a register by 2s where s is the shift amount, if you
assume the contents of the register are signed.

MOV R0,R0,ASR 2

20

1111 1111 1111 1111 1111 1100 0000 0000R0 before:

1111 1111 1111 1111 1111 1111 0000 0000R1 after:

= -1024

= -1024 / 22 = -256

09/11/2017 Comp 411 - Fall 2017

Rotate RiGHT Shifts

Rotating shifts have no arithmetic analogy. However, they don’t lose
bits like both logical and arithmetic shifts. We saw rotate right shift
used for the I-type “immediate” value earlier.

MOV R0,R0,ROR 2

Why no rotate left shift?

● Ran out of encodings?
● Almost anything Rotate lefts can do ROR can do as well!

21

0000 0000 0000 0000 0000 0000 0000 0111R0 before:

1100 0000 0000 0000 0000 0000 0000 0001R1 after:

= 7

= -1,073,741,823

09/11/2017 Comp 411 - Fall 2017

Next time

Instructions still missing

● Access to memory
● Branches and Calls
● Control
● Multiplication?
● Division?
● Floating point?

22

