P N
TNSTRUCTION SET ARCHITECTURE (ISA) | ||

Er\codinﬂ of instructions raoises some inJrer‘eerir\ﬂ choices..

® Tradeoffs: Per?ormar\ce, compachescs, Proar‘ammaloil'ﬂry
o uhiPormHy. Should different instructions

o Be the same size (humber of bits)?
o0 Toke the same amount of time to execute?
o Trend: Unitormity. Akkords simplicity, speed pipelining
o Complexier. How many diffFerent instructions? What level
oPer‘a’riohs?
o Level ok support for particular software operations: array
indexin@ procedure calls, "polynomiol evaluate', etc
o 'Reduced Instruction set Computer
(RISC) philosophy: simple instructions, optimized For speed
® Mix ok Engineering & Art.

09/1/2.017 Comp 4l - Fall 2017 |

ARM? PROGRAMMING MODEL

A REPRESENTATIVE RISC MACHINE

Processor State Main Memory

(inside the CPV)
RO /\/

R1 Addresses | 31 0

R2 Ol 32| 1|0

R3
R4 4
R5 8 32 bit “words”

R6 IG (4 bytes)

R7
RS 20

R9
R10
R11
R12

next instruction

R13 (SP)

R14 (LR)
R15 (PC)

CPSR

Ih Comp 41 we'll use a subset ofF
the ARM7 core Instruction set as
an example ISA.

Fetch/Execute Ioop.

o Fetch Mem[PC]

e PC=PC+ 4

o execute Fetched instruction
(may change pch

e repeat

ARMT uses by-l'e memory
addresses. However, each
instruction is 32-bits wide, and
*mustt be dligned on a multiple of
4 (word) ad?;'ees. Each word
contains Four 8-bit bytes.
Addresses of consecutive
instructions (words) differ by 4.

09/1/2.017 Comp 4l - Fall 2017

——
ARM? MEMORY NITS 1Ll

® Memory locations are addressable in different sized chunks
o 8-bit chunks (Iaeres)
IG-bit chunks (shorts)

O I I
I \
o 32-bit chunks (words) word by+e3 by+e2 by-l-el Iay+eo
o0 G4-bit chunks Addr — : :

short2 shortO

|

(longs/doubles) O
e We dso f—requehﬂy need 4
8-

occess to individual bits!

(instructions help with this) &

e Every BYTE has a unique address
(ARM is a byte-addrressable machine)
® Most instructions are one word
e We wil consider the predominant "ittle-endion' ARM.

09/1/2.017 Comp 4l - Fall 2017 3

p—_ %
ARM REGISTER NITS 1]

® There are I&G hamed registers (RO, Rl .. RI57]
® The operands of most instructions are registers

® This means to operaJre on a variadbles in memory you must:

o Load the value/values From memory into a register

o Perform the instruction
o0 Store the result back into memor-y

® (oing to ond From memory can be expensive
(4% o 20x slower than operating on o reaierer’)

® Net effect: Keep variables in registers os much os Possilole!

® 3 registers are dedicated to specil:ic tasks
(sP=RI3, LR=RI4, PC=RI5), I3 are available for generol use

09/1/2.017 Comp 41 - Fall 2017

BAsICc ARM INSTRVCTIONS

® |hstructions include various 'Fields' that encode combinations of

OPcodes and arguments
® special Fields enable extended functions (more in a minute)

® severa 4-bit OPERAND Fields, for Gpeciﬁyina the sources and

destination of the operation, usually one of the 1G registers

e Embedded constants (‘immediate" values) of various sizes,

The 'basic’ olaJra—Processir\ﬂ instruction formats:

4 3 4 1 4 4 8 4

R type: | 1110 000 | Opcode |0 Rn Rd 00000000 Rm
4 3 4 1 4 4 4 8

| type: 1110 001 | Opcode | O Rn Rd Shift Imm

09/1/2.017

ComP 41 - Fall 2017

1Ll

—

R-TYPE DATA PROCESSING

lnstructions that process +hree-r'eaic5+er araumerﬂrc;:

4 3 4 1 4 4 8 4
R type: | 1110 000 | Opcode | S Rn Rd 00000000 Rm
A
0000 - AND
0001 - EOR
i - 0010 - SUB
instructions Follow the 0100- ADD y R
i . 0110 - SBC
Following template: o sac
1000 - TST
1001 - TEQ
1010 - CMP
OP Rd ! Rn ! Rm to11-oMn IS encocled as:
Later on we'l introduce 1100 - ORR
more complex variants of 1101-MOV | 1110 0000 1000 0001 0000 0000 0000 0011
these ‘simple’ R-type 1110 - BIC
instructions. \ \11 11 - MVN
L J

09/1/2.017

Comp 41 - Fall 2017

OxEB810003

I-TYPE DATA PROCESSING I

Ihstructions that process two registers and a constant:

4 3 4 1 4 4 4 8
| type:| 1110 001 | Opcode | S Rn Rd Rotate Imm38
A
0000 - AND
‘ +Y 0001 - EOR
$|mP e |_ Pe 0010 - SUB
0011 - RSB
instructions follow the 0100- ADD RSB R7,R10, #49
i . 0110 - SBC
Following template: o sac
1000 - TST
d 1001 - TEQ
1010 - CMP
OP Rd, Rn, #constant 1910-S Ts encoded as:
1100 - ORR
In +he | instructions the second ist -
oPemn“d*‘/.gemPmed oy o cmjm ﬂ;iﬁ_: er H%) gllgv 1110 0010 0110 1010 0111 0000 0011 0001
encoded in the instruction 1111 - MVN
\ 1
9

OXE26A7031

09/1/2.017 Comp 41 - Fall 2017

e\
I-TYPE CONSTANTS IT:“

—

ARM7 provides only 8-bits fFor specill\/inﬁ an immediate constant value.
Given that ARM7 is a 32-bit architecture, this may appear to be a
severe limitation. However, on allowing for a rotating shif+ +o be
applied to the constant.

imm32 = (imm8 >> (2 * rotate)) | (imm8 << (32 - (2 * rotate)))

Example: 1920 is encoded as:

Rotate Imm38
1101 | 00011110 | = (30 >>(2*13)) | (30 << (32 - (2*13)))
= 0 | 30*64
= 1920
How would 25¢ be encoded?
Rotate Imm8

1100 | 00000001

09/1/2.017 Comp 4l - Fall 2017 8

NEXT TIME

e We wil examine more of the 'basic" instruction types
and capabilities

e Result Plaﬁs

® Program Status Reais‘rer‘cs

09/1/2.017 ComP 41 - Fall 2017

READ THE INSTRVCTIONS

. when all else Fails

What do instructions do?

How are instructions decoded?
Unitormity and Symmetry
Cramming stukk in

CPU state
o Condition codes

o Program Status Register (PskR)

09/1/2.017 ComP 41 - Fall 2017

SHOULDN'T WE | DO 1 Lok
READ THE
INSTRUCTIONS ?

A CLOSER LOOK AT THE OFPCODES

The OPcode Field is common to both of the basic instruction types

4 3 4 1 4 4 8 4
R type: | 1110 000 | Opcode | S Rn Rd 00000000 Rm
| type:| 1110 001 | Opcode | S Rn Rd Rotate Imm38

* Y.

"+, We haver't discussed the ‘s' Field yet.
000 AND . W set it tells the processor to
ARM data P\"OCBGG.“‘IQ 0001 - EOR e, retain some ‘state’ after the
instructions can be broken into 0010 - SUB ‘.. instruction has executed.
four basic groups: 8%8:2% e This ‘state’ is in the
o Arithmetic (©) 0101 - ADC T, For'm of 5-flags.
e Logc (4) 0110 - SBC
e Comparison (4) L otti-Rsc \;
Register transfer (2) 1001 - TEQ ?
¢ 3 1010 - CMP Many instructions
é/ 1011 - CMN (al we've seen thus
1100 - ORR £ar) have a special
1101 - MOV .
1110 - BIC variant that sets the state !
[1111 - MVN In these variants the opcode has

09/1/2.07 Comp 4l - Fall 207 an 's' appended |

ARITHMENIC ITNSTRVCTIONS

ADD R3,R2,
SUB RO, R4,
RSB RO, R4,
ADC RT,RS,
SBC R2,R5,
RSC R1,RS,

A bere—sized example:

09/1/2.017

R12
R6
R2
R8
R7
R3

4] =

42 =

A— R3 «— R2 + Rz
2 Ke3i9+er9 can contain either 32-bit unelgned values
or 32-bit 2's-complement signeal values.

A— RO «— R4 - RG
2 Once more, either 32-bit unslg'\ed values or 32-bit
2's-complement signeal values.

A— RO «— -R4 +R2

/g The operands of the subtraction are in reversed order. it is called

‘Reverse Subtract'. Why? The I—+ype version makes more sense.

A— RI—< R5E+R8+C
2 Where 'C' is the Carry-out from some earlier instruction (usually an
ADDS or ADCS) as saved in the Program Status Regster (PSR)

A— R2—R5-R7-1+C
2 Where 'C'is the Carry-out from some earier instruction (usually a
SUBS or SUBCS) as saved in the PSR
A— RI«<—-RE+R3-1+C
I 'Reverse subtract' with a Carry. Usually a carry generated from a
previous RSBS or RSCs instruction

1=1-1+C 1

00000001 10011011 00000001 10011011

00000000 00101010 + 11111111 +[11010101

Comp 41 - Fall 2017 1| 66060001 C=1]| 611100601 0

=256 + I3 = 309

Looic TNSTRVCTIONS

L ogical operations on words
operate ‘bitwise’, that is they
are applied to correspondina
bits of both source operands.

AND RO,R1,R2
ORR RO,R1,R2

A — Commonl

EOR RO,R1,R27K " coled

‘exclusive-or*

BIC RO,R1,R2 /\Y/Called ‘Bit-clear"

RO «— RI & “(R2)

09/1/2.017

R1:
R2:
RO:
RO:
RO:
RO:

0000

0000

0000

0000

1111

1111

0000

0000

0000

0000

0000

0000

1111

0000

1111

0000

0000

0000

0000

0000

1111

0000

0000

0000

0000

0000

0000

0000

1111

1111

1111

0000

0000

0000

0000

0000

0000

1111

1111

0000

0000

0000

0000

0000

0000

1111

0000

0000

COW?AML—FmIZOW

p—_ %
STATVS FLAGS 1N

Now it is time to discuss what status Hags are availdble. These Five
status P\aas are kept in a special register caled the Program status
Reginger (PSR). The PSR also contains other impor-tant bits that
control the processor.

o N - set it the result of an opeartion is negative
(Most significant Bit (MSB) is a 1)

® Z - set ik the result of an operation is "0

o C - set ik the result of an operation has a carry out of its MsB

e V -setikasum of two positive operands gives a negative result, or
it the sum of two negotive operands gives a positive result

® Q@ - a sticky version of overflow created by instructions that
generate multiple results (more on +his later on).

09/1/2.017 ComP 41 - Fall 2017

p—_ %
CoMPARISON TNSTRUCTIONS L]

—

These instructions moclilly the status P\aas, but leave the contents of
the regsters unchanaeol. They are used to test register contents, and
they must have their 'S’ bit set to " They adlso don't mocliPy their Rd,

and by convention Rd is set to "0000"

4 3 4 i 4 4 8 4
R type: 1110 000 | Opcode | 1 Rn 0000 | 00000000 Rm
| type: 1110 001 | Opcode | 1 Rn 0000 Rotate Imm8

A PSR Hags set For the resut R2 - R3 t g

CMP RO,RT -k i0- e

\N— PSKFIagsse‘l"PorﬂteresuH R2 + R3

CMN R2,R3 7K

\N— PSKFIagsse‘l"PorﬂteresuH R4 & 8

TST R4,#8 X

— PSR Flags set for the resut R5 " 1024

TEQ R5, #1024 %

09/1/2.017 Comp 41 - Fall 2017 5

e\
REGISTER TRANSFER ﬂE"

—

These instructions are used to transker the contents ok one register
to another, or simply to initidlize the contents of a register. They
moke use ok only one operand, and, by convention have their Rn Field
set to '0000"

4 3 4 1 4 4 8 4
O < R3 R type: 1110 000 | Opcode | S| 0000 Rd 00000000 Rm

s —KR
MOV R@] R3 /8 | type: 1110 001 | Opcode | S| 0000 Rd Rotate Imm8

L 1101 - MOV
8 — RI < 409 g

MOV R1,#4096-%

s —R2 «<— -R4

MVN R2,R4 X

—R3 < -1|

MVN R3,#1 -X

09/1/2.017 ComP 41 - Fall 2017 [

p—_ %
ARM SWIFT OPERATIONS 1]

—

A novel Feature of ARM is that all data-processing instructions can
include an optional ‘shit-t', whereas most other architectures have
separate shitt instructions. This is actudlly very useful as we wil see
later on. The key to shilting is that 8-bit tield between Rd and Rm

4 3 4 1 4 4 5 2 1 4
R type: | 1110 000 | Opcode | S Rn Rd Shift (L]0 Rm

Shift Type

00 - logical left
01 - logical right
10

11

Shift - arlthme_tlc right
- rotate right
Amount

0-31 bits

09/1/2.017 ComP 41 - Fall 2017 7

LEFT SWIFTS 1]

Left shifts ef—f—ecﬂvely multiply the contents of a
register Iay 2° where s is the shirt amount.

MOV RO,RO,LSL 7

RO before: | 9000 0000 0000 0000 0OOOB 0OBO 00O 0111 (=7
=
R1 after: | 9000 0000 0000 0000 0000 0011 1000 0000 [=7 *2" =896

Shifts can adlso be aPPlied to the second oPer'ancl of any
data processing instruction

ADD R1,R1,R0O,LSL 7/

09/1/2.017 Comp 41 - Fall 2017 18

RIGHT SHIFTS ﬁ

—

Right shifts behave like c/ividirlg the contents of a register
by 2° where s is the shift amount, if you assume the
contents of the real;’rer are unsigned

MOV RO,RO,LSR 2

RO before: 0000 00VO 0VBO VOO BOPO B100 0OVB 0060 | = 1024
—— 3
R1 after: D0O0O 000D 0DOO 0PDO 0ODO DOO1 DOOO VOO | = 1024 /22 =256

09/1/2.017 ComP 41 - Fall 2017 19

p—_ %
ARITHMETIC RIGHT SHIFTS L]

—

Arithmetic right shifts behave like c/ividing the contents of
a register by 2° where s is the shift amount, if you
assume the contents ofF the reﬁis+er are signec{

MOV RO, RO,ASR 2

RO before: [1111 1111 1111 1111 1111 1100 0000 0006
—— 3
R1 after: | 1111 1117 1111 1111 1111 1111 0000 0000

-1024

-1024 | 22 = -256

09/1/2.017 Comp 41 - Fall 2017 20

p—_ %
ROTATE RIGHT SHIFTS L]

—

R otating shifts have no arithmetic analogy. However, they dont lose
bits like both logical and arithmetic shifts. We saw rotate right shif+
used For the -type immediate" value earlier.

MOV RO, RO,ROR 2

RO before: | 90600 0000 0006 0000 0BOO BOBO 00O BT111|(=7

R1 after: iee 0000 00GO 00O 6RO 00RO BB 6001 | =-1,073,741,823

\Nhy no rotate left shifFt?

® Ron out of er\codings?
o Almost anything Rotate lefts can do ROR can do as well

09/1/2.017 Comp 41 - Fall 2017 21

NEXT TIME 1]

JOE VITALE

Instructions still missinﬂ

® Access to memory g

® Branches and Calls b;fj;g

e Control Instruction
° MulJriPIicaJrion? Manual

® Division?

° Floaﬂna Poirﬁ'? T':%

Guidebook

You Should Have ;
;i Been Given at
. Birth

09/1/2.017 Comp 41 - Fall 2017 22

