MEeEmMORY CONCEPTS

Memory is divided into 'addressable"
uhits, each with an address (ke an
array with indices)

Addressadble units are usually larger
than a bit, typically 8, 16, 32, or G4
bits
Each address has variable ‘contents'
Memory contents might be:

Ir\+eﬁer9 in 2's complement

Floats in IEEE format

Strings in ASCIl or Unicode

Data structure de jour

ADDRESSES

Nothing distinguishes the dif-fFerence

09/05 /2017 CoprML-FmIZOW

Address Contents
0 0x0000002a
1 0x40490fd8
2 0x2065654C
3 Ox74726148
4 0x20647542
5 0x6976654cC
6 0x0020656¢C
7 0x00000002
8 Oxe3ab0000
9 Oxe3ab100a
10 Oxe0800001
11 0xe2511001
12 Oxlafffffc
13 Oxeafffffe
14 0x00004020
15 0x20090001

ONE MORE THING

INSTRUCTIONS for the CPU are
stored in memory along with data

CrPU Fetches instructions, decodes
them and then performs their implied
operaﬁon

Mechanism inside the CPU directs which
instruction to aeJr next.

They appear in memory as a string of
bits that are +ypically uniForm in size
Their encoding os 'bits" is called
'machine language." ex: Oc3cld7HFF

We assign 'mnemonics’ to particular
bit patterns to indicate meanings.
These mnemonics are called

Ac:-c:-embly language. ex: mov r1, #10

09/05 /2017 Comp 41 - Fall 2017

Address Contents
0 42
1 3.141592
2 “‘Lee ©
3 “‘Hart”
4 “Bud “
5 “Levi”
6 “le *
7 2
8 mov r0, #0
9 mov r1, #10
10 add r0, r0, r1
11 subs r1, r1, #1
12 bne .-2
13 b.
14 0x00004020
15 0x20090001

A BIT oF HisTorY

There is a commonly recurtring debate over whether
‘data" and 'instructions' should be mixed. Leads to two
commohn Favors of computer architectures

‘Harvard' Architecture

Program
cru o« T
/0 <« (Central
(Input/Output) Processing |, Data
Unit) Memory
"Yon Neumann' Architecture
CPU N
/0 <« (Central _ Unified
(Input/Output) Processing Memory
Unit)

09/05 /2017 Comp 41 - Fall 2017

HARVARD ARCHITECTURE

Instructions and dota do not/should not interact.
They can have difFerent "word sizes' and exist
in dirferent 'address spaces'

- : Howard Aiken:
Advantages ot
- No selt-moditying code (a common hacker trick) Harvard Mark 1

- Optimize word—lengﬂ-‘«; of instructions for control and data For applications

- Higher Throughput (ie. you can Letch data and instructions £rom their
memovries simuHaneously)

- Disadvan’mges:
- The H/W de«;iﬁner decides the trade-offF between how big of a program and
how large are data

- Hard to write ‘Native" programs that aeneraJre new progroms
(ie. assemblers, compilers, etc.)

- Hard to write "Operaﬁna Sy9+em9" which are progroms that at various points
treat other programs as data (ie. loading them From disk into memory,
swapping out processes that are idie)

09/05 /2017 Comp 4l - Fall 2017 4

Von NEVMANN ARCHITECTURE

Instructions are Jus’r a +ype of data that

Ghare a Common “WOFd 9'28 ' aﬂd “addregg John Von Neumann:
. Proponent of unified
S Pace“ \Y,Y |+h O+her +Y Peg memory architecture

- Most common model used +oday, and what we assume in 4
- Aalvan+a3e9:
. S/W desigﬂer decides how to allocate memory between data and programs
- Can write programs to create new programs (assemblers and comPiler‘G)
+ Progroms and subroutines can be loaded, relocated and modified by other
progroms (danaer‘ous, but Powerﬁul)
- Disadvan+age9:
- Word size must suit both common data types and instructions

+ Slightly lower PerPormance due to memory bottleneck (mediated in modern
computers on the use of separate progrom and data caches)

- We need to be very careful when +readina on memory. Folks have taken
aalvarH'aﬂe of the Pr'oar'am—olaJra uhification to introduce viruses.

09/05 /2017 Comp 41 - Fall 2017

COMPVTER SYSTEMS

At what level of adbstraction can we understand a computer?
Compuﬂnﬁ?

mmmmmmmmm
Data

Register

Transistors —||f| —‘ﬂfl

09/05 /2017 Comp 41 - Fall 2017

CONCOCTING AN INSTRUCTION SET

move flour, bowl

add milk, bowl
Nerd Chef add egg, bowl
at work. move bowl,mixer

rotate mixer

1;

Your first problem set is posted

09/05 /2017 COWP‘M%-FQlZOW

INSTRUCTIONS ARE SIMPLE

e Computers interpret "Proaramc;" by translating them From the
high-level language where into low-level" simple instructions that it
understands

° Hiﬁh‘l_evel Lanﬁuaaes
. Compiler's
. Ir\+erpre+ers

x: .word O
® Assembly Language y: word
c: .word 123456
LDR RO, [R10, #0] : get x
. SUB RO, &a #3 9
int x, y; —> LDR R1, [R10, #4 ; get y
y = (x-3)*(y+123456) DR R2, AR10, #8) get ¢
MUL RO, RO, R1
STR RO, [Rio, #4] : save y

09/05 /2017 Comp 41 - Fall 2017

INSTRUCTIONS ARE BINARY

e Computers interpret "ac;c;embly Proaramc;" Iay translating them
From their mnemonic simple instructions into strings oF bits
° Ac;c;embly l_anauage
® Machine I_anauaae
o Note the one-to-one correspondence
between lines of assembly code and

Lines of machine code B%00000000

;; 'Wgﬁﬂ g 0x00000000

c: .word 123456 0x0001E240
I T Al

LDR R1, [Ri0, #4 . get y —> OxE59A0000

kBB g%, I_IR10k2#8 ; get c 0xE2400003

STR Re, [Rie, #4] ; save y 0xE59A2008

OxE0811002

0xE0000190

OXE58A0004

09/05 /2017 Comp 41 - Fall 2017

A GENERAL-PURPOSE COMPVTER

THE VON NEVMANN MODEL

Mar\y architectural aPProaches to the aener‘al purpose comPquer‘
have been exPlored. The one upon which nearly ol modern computers

is based was Propoc;ed Iay John von Neumann in the late 1940s. s
major componerﬂrs are:

Input/ Central —_ Main
Output — Processing Memory
Unit
My dog knows how fo f‘\’kh' Central Processing Unit (CPU): A device which fetches,

interprets, and executes a specified set of

[) o] W n
fes sad I, & operations called Instructions.
oo much about Memory: storage of N words of W bits each, where W
“words” is a ‘?ixed architectural parameter, and N can
be expanded o meet needs.
I/0: Devices for communicating with the outside world.
09/05 /207 Comp 4 - Fal 2017

ANATOMY OF AN INSTRUCTION i

e Computers execute a set ok primitive operations called instructions
® Instructions specity an operation and its operands

(argumerﬁrs of the oPeraJrion)
® Types ok oPer'andc;: destination, source, and immediate

A Operands

iable e
ADD RO , R1 , R?2 (VONCI ' S, ar gum n'l'S, e-kJ
e i A ? ?
E < Source Operands
b 0639 o i Destination Operand
regis+ers that are

e o 2 Immediate Operand
ADD RO, R1, #1

09/05 /2017 Comp 41 - Fall 2017 1

MEANING OF AN INSTRUCTION

1Ll

—

e Operations are abbreviated into opcodes (-4 letters)

® Instructions are ';PeciPied with a very regular syntox
o Opcoalec; are Followed by arguments

O Usudlly the destination is next, then one or more source

arguments (This is hot strictly the case, but it is generally true)

o V\/hy this order?

AnaloaY to hi.ah—leve\ \anﬂuaae ke Java or C

/‘/

add RO, R1, R2/h

09/05/2.017

The instruction syntax provides

operands in the same order as int ro , ri , r2)
you would expect in a _ .
sMemeﬂmuhighlevel roe =r1 + r2 ’
lanquage.
Instead of:
ri + r2 = ro;

Comp 4l - Fall 2017 7

A SERIES OF INSTRVCTIONS

O ﬁenerally...

o Instructions are retrieved sequentially From memot-y

o An instruction executes to completion before the next

instruction is started

o But, there are excePJrions to these rules

Instructions

=) ADD RO, R1, R1

m) ADD RO, RO, RO

What does this

=) ADD RO, RO, RO

program do?

/.

o)

=) SUB R1, RO, R

2

09/05/2.017

Comp 41 - Fall 2017

Variables

RO:H 172 24 48

R1:8 42

R2:8

R3:10

PROGRAM ANALYSIS

® KepeaJr the process +rea+in@ the variables as unknowhns or

"Cormal variables"

O Knowinﬂ what the progrom does adlows us to write down its

speciqc—icaﬂon, and give it a meaninaﬁu\ name

® The instruction sequence then becomes a .ﬁeneral—PurPose tool

Instructions Variables
=) ADD RO, R1, R1 RO:¥ 2 4% 8x
=) ADD RO, RO, RO What does this [pq1.y% 7x

program do?
=) ADD RO, RO, RO /. R2:y
=) SUB R1, RO, R 4 R3:z

09/05/2.017 Comp 4l - Fall 2017 14

LOoOPING THE FLOW

O KepeaJr the process +rea+in@ the variables as unknowhns or

"Cormal variables"

O Knowinﬁ what the progrom does adlows us to write down its

speciqcicaﬂon, and give it a meaninaﬁu\ name

® The instruction sequence then becomes a .ﬁeneral—PurPose tool

Instructions Variables
times7: ADD R@, R1, R1 RO:¥ 8% 5Bx 392x
ADD RO, RO, RO An ’"ﬁq"" leoP |R1:% 7% 48x 343x
ADD RO, RO, RO R2:y
SUB R1, RO, R R3:z
B times7

09/05 /2017 Comp 41 - Fall 2017 5

=)

OPEN ISSVES IN OUR SIMPLE MODEL

WHERE in memory are INSTRUCTIONS stored?
HOW are instructions represented?

WHERE are VARIABLES stored?

What are LABELs? How do they relate to

where instructions are stored?

® How about more complicaJreol dota types? d

o Arrays? /:\

o Data Structures?
o Objec’rs?

® Where does a program start exequrinﬂ?

® When does it stop?

09/05 /2017 ComP 41 - Fall 2017 [

THE STORED-PROGRAM COMPVTER

® The von Neumann architecture addresses these issues as Follows:
® |hstructions and Data are stored in a common memory

° Sequenﬁal semantics: To the PROGRAMMER Memory
all instructions appear to execute in an order,
or sequenﬁally Instruction
Instruction
Key idea: Memory holds not only Central Instruction
data, but coded instructions Processing | g instruction
that make up a program Unit
data
CPU Fetches and executes instructions From memory data
-The CPU is a H/W interpreter data
- Program IS simply DATA for this interpreter
- Main memory- $inale expanalable resource pool \/
- cohstrains both data and program size

- don't need to make separate decisions of
how large of a program or data memory to buy

09/05 /2017 Comp 41 - Fall 2017

dest —

> PC 7 Iiioioooliol
Rl 2R3

o INSTRUCTIONS coded as binary dota
e PROGRAM COUNTER or PC-:

Address of next instruction to execute
® logic to translate instructions into

f—_ Al Aces } 4 control signals For data path

operations &

09/05 /2017 ComP 41 - Fall 2017 18

registers

P N
TNSTRUCTION SET ARCHITECTURE (ISA) | ||

Er\codinﬂ of instructions raoises some inJrer‘eerir\ﬂ choices..

® Tradeoffs: Per?ormar\ce, compachescs, Proar‘ammaloil'ﬂry
o uhiPormHy. Should different instructions

o Be the same size (humber of bits)?
o0 Toke the same amount of time to execute?
o Trend: Unitormity. Akkords simplicity, speed pipelining
o Complexier. How many diffFerent instructions? What level
oPer‘a’riohs?
o Level ok support for particular software operations: array
indexin@ procedure calls, "polynomiol evaluate', etc
o 'Reduced Instruction set Computer
(RISC) philosophy: simple instructions, optimized For speed
® Mix ok Engineering & Art.

09/05/2017 Comp 4l - Fall 2017 19

ARM? PROGRAMMING MODEL

A REPRESENTATIVE RISC MACHINE

Processor State Main Memory

(inside the CPV)
RO /\/

R1 Addresses | 31 0

R2 Ol 32| 1|0

R3
R4 4
R5 8 32 bit “words”

R6 IG (4 bytes)

R7
RS 20

R9
R10
R11
R12

next instruction

R13 (SP)

R14 (LR)
R15 (PC)

CPSR

Ih Comp 41 we'll use a subset ofF
the ARM7 core Instruction set as
an example ISA.

Fetch/Execute Ioop.

o Fetch Mem[PC]

e PC=PC+ 4

o execute Fetched instruction
(may change pch

e repeat

ARMT uses by-l'e memory
addresses. However, each
instruction is 32-bits wide, and
*mustt be dligned on a multiple of
4 (word) ad?;'ees. Each word
contains Four 8-bit bytes.
Addresses of consecutive
instructions (words) differ by 4.

09/05 /2017 Comp 41 - Fall 2017

20

——
ARM MEMORY NITS 1Ll

® Memory locations are addressable in different sized chunks
o 8-bit chunks (Iaeres)
IG-bit chunks (shorts)

O I I
I \
o 32-bit chunks (words) word by+e3 by+e2 by-l-el Iay+eo
o0 G4-bit chunks Addr — : :

short2 shortO

|

(longs/doubles) O
e We dso f—requehﬂy need 4
8-

occess to individual bits!

(instructions help with this) &

® Every BYTE has a unique address
(ARM is a Iaere-aaldres;alole machine)
® Most instructions are one word

09/05 /2017 Comp 41 - Fall 2017 21

p—_ %
ARM REGISTER NITS 1]

® There are I&G hamed registers (RO, Rl .. RI57]
® The operands of most instructions are registers

® This means to operaJre on a variadbles in memory you must:

o Load the value/values From memory into a register

o Perform the instruction
o0 Store the result back into memor-y

® (oing to ond From memory can be expensive
(4% o 20x slower than operating on o reaierer’)

® Net effect: Keep variables in registers os much os Possilole!

® 3 regsters are dedicated to specil:ic tasks (sP, LR, PC)

I3 are available For general use

09/05 /2017 Comp 41 - Fall 2017 22

p—_ %
BASIC ARM TNSTRUCTIONS L]

—

® Instructions include various 'Felds"' that encode combinations of
OPCODES and arguments

o speciadl +elds enable extended functions

e several 4-bit OPERAND Fields, for specitying the sources and
destination of the operation, usually one of the IG registers

® Embedded constants (‘immediate" values) of various sizes,

The basic da+a-|9rocessina instruction formats:

4 3 4 1 4 4 8 4

R type: | 1110 000 | Opcode |0 Rn Rd 00000000 Rm
4 3 4 1 4 4 4 8

| type: 1110 001 | Opcode | O Rn Rd Shift Imm

09/05 /2017 ComP 41 - Fall 2017 23

R-TYPE DATA PROCESSING

lnstructions that process +hree-r'eaic5+er araumerﬂrc;:

4 3 4 1 4 4 8 4
R type: 1110 000 Opcode | 0 Rn Rd 00000000 Rm
A
0000 - AND
0001 - EOR
1 - 0010 - SUB
instructions Follow the 0100- ADD , ,
i . 0110 - SBC
Following template: o sac
1000 - TST
d 1001 - TEQ
1010 - CMP
OP R ! Rn ! Rm 1011 - CMN IS encocled as:
Later on we'l introduce 1100 - ORR
more complex variants of 1101 - MOV 1110 0000 1000 0001 0000 0000 0000 0011
these 'simple' K-+y|pe 1110 - BIC
instructions. \ \11 11 - MVN
S
OxEO810003
09/05 /2017

Comp 41 - Fall 2017

24

T-TYPE DATA PROCESSING i

e
Ihstructions that process one register ond a constant:
4 3 4 1 4 4 4 8
R type: | 1110 001 | Opcode | 0O Rn Rd Rotate Imm38
A
0000 - AND
. 0001 - EOR
Simple Itype oo 2
instructions Follow the 0100 - ADD RSB R7, R10, #49
0101 - ADC
Pollownng template: || uno-see
1000 - TST

1001 - TEQ

oP Rd, Rn, #constant |we-ow 1o o coded as:

1100 - ORR
In the -type instructions the second register 1101 - MOV
opel"al’\:YIG rep by a constant +ha+ais 1110 - BIG 1110 0010 0110 1010 0111 0000 0011 0001
encoded in the instruction 1111 - MVN
by OxE26A7031

09/05 /2017 Comp 41 - Fall 2017 25

P N
I-TYPE CONSTANTS IT:“

—

ARM7 Providec; only 8-bits For cspeciﬁx/inﬁ an immediate constant value.
Given that ARM7 is a 32-bit architecture, this may appear to be a

severe limitation. However, on allowinﬁ For a ro+a+ir\ﬂ shift to be
aPPlied to the constant.

imm32 = (imm8 >> (2 * rotate)) | (imm8 << (32 - (2 * rotate)))

Example: 1920 is encoded as:
Rotate Imm38

1101 | 00011110 | = (WI (30 << (32 - (2*23)))

= 0 | 30 * 128 = 1920

09/05 /2017 ComP 41 - Fall 2017 26

p—_ %
NexT TIME (1]

e We wil examine more instruction types and capabilities

O Br'anchina
o I_oadir\ﬁ From and storing to memory
O SPecial ihstructions

e Result P\aﬁe
® Processor Status Reﬂierers

09/05 /2017 ComP 41 - Fall 2017

27

