MORE BINARY REPRESENTATIONS

011001111111110001111101011111011101100111001010111010001001111011101111101000001001011100100001000101110100001100011100 11100010100111000110001001011111111010011100011001000110101110101100100001010110110111000010111110101100101011010110011001
 1011100101010010011000110000010000001011100111011
 010001010101000100100101111100010011011 110010101110100010011110111011111010 100011001000110101110101100100000101 10100101011110010011100111100101 1001110000101000000101100011101 01111011010110101000110010101011 00100100110101101010110001011 10010111001000010001011101000 01110000101111101011001010110 000000101110010000011010110

 10111001010100100110001100000 0010001111010010100001110001100 0100010101010001001001011111000 11001010111010001001111011101 H 000110010001101011101011001000 101001010111100100111001110010 10011100001010000001011000111010 01111011010110101000110010101010 001001001101011010101100010111110011 1001011100100001000101110100001100011100 0111000010111110101100101011010110011001 00000010111001000001101010010010100000100010001 1001100111010100100011010110011100000101001100101010011 oocoiocoo oiot ooooloo 000010111001110000101000000101100011101010000100 111000011010010001001000001101110010000101000101010100010010010111110001001101110010010011010110101011000101111100111001

- Numbers
- Signed integers
- Biased integers
- Fixed-point fractions
- Floating point
- "Finiteness"
- Pixels
- On screen
- in files

Signed Intecers

- Obvious method is to encode the sign of the integer using one bit.
- Conventionally, the most significant bit is used for the sign.
- This encoding of signed integers is called "SIGNED MAGNITUDE"

$$
v=-1^{s} \sum_{i=0}^{n-2} 2^{i} b_{i}
$$

- The Bad
- The Good
- Easy to negate, easy to take absolute value
- Two ways to represent "O", tO and -O
- Add/subtract is complicated; depends on the signs
- Not frequently used in practice
- With one important exception that we'll discuss shortly

2's COMPLEMENT NOTATION

- The 2's complement representation for signed integers is the most commonly used signed-integer representation.
- It is a simple modification of unsigned integers where the most significant bit is a negative power of 2 .

$$
\begin{aligned}
& v=-2^{n-1} b_{n-1}+\sum_{i=0}^{n-2} 2^{i} b_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \text { still a "sign bit" } \\
& +2017 \\
& \begin{array}{l}
\text { (It must be It for } \\
\text { the number to < } 0 \text {) }
\end{array} \\
& -31
\end{aligned}
$$

- Huh?
- Negative numbers seem hard to "read" (for humans)
- Nonsymmetric range:

$$
\text { For } 12 \text { bits the range is }-2048 \leq x \leq 2047
$$

WHY Z'S COMPLEMENT?

- In the two's complement representation for signed integers, the same binary "addition procedure" (mod 2^{n}) works for adding any combination of positive and negative numbers.
- Don't need a separate "subtraction procedure" (carries only, no borrows)
- The "addition procedure" also handles unsigned numbers!
- In 2's complement adding is adding

$$
\begin{aligned}
55_{10} & =000000110111_{2} \\
+10_{10} & =000000001010_{2} \\
\hline 65_{10} & =000001000001_{2}
\end{aligned}
$$ regardless of operand signs.

- You NEVER need to subtract when you use 2 's-complement.
- Just form the 2's -complement of the subtrahend

Ignore this "carry"

$$
\text { ct } \begin{aligned}
55_{10} & =000000110111_{2} \\
\text { ent. } & +-10_{10}=111111110110_{2} \\
\text { ment } & \frac{45_{10}}{}=1000000101101_{2}
\end{aligned}
$$

Z'S COMPLEMENT TRICKS

- Negation - changing the sign of a number
I. Invert every bit (i.e. $1 \rightarrow 0, O \rightarrow$ I)

2. Add I

Example: $42_{10}=000000101010_{2}$
$-42_{10}=111111010101_{2}+1=111111010110_{2}$

- Sign-Extension - aligning different sized 2's complement integers - simply copy the sign bit into higher positions

Example: 16 -bit version of 42: $42_{10}=0000000000101010_{2}$ 16 -bit version of $-42:-42_{10}=1111111111010110_{2}$

CLASS EXERCISE

IO's-complement Arithmetic (so you'll never need to borrow again)
Step 1) Write down two 3-digit numbers, where you'll subtract the second from the first

Step 2) Form the 9's-complement of each digit in the second number (the subtrahend)

Step 3) Add 1 to it (the subtrahend)
Step 4) Add this number to the first
Step 5) If your result is less than 1000, form the 9's complement of the sum, add 1 , and remember your result is negative, otherwise subtract 1000

Helpful Table of the 9's complement for

each digit
$0 \rightarrow 9$
$1 \rightarrow 8$
$2 \rightarrow 7$
$3 \rightarrow 6$
$4 \rightarrow 5$
$5 \rightarrow 4$
$6 \rightarrow 3$
$7 \rightarrow 2$
$8 \rightarrow 1$
$9 \rightarrow 0$

What did you get? Why weren't you taught to subtract this way?

FIXED-POINT NUMBERS

- You can always assume that the boundary between 2 bits is a "binary point".
- If you align binary points between addends, there is no effect on how operations are preformed.

$$
\begin{aligned}
11111101.0110 & =-2^{7}+2^{6}+2^{5}+2^{4}+2^{3}+2^{2}+2^{\theta}+2^{-2}+2^{-3} \\
& =-128+64+32+16+8+4+1+0.25+0.125 \\
& =-2.625 \\
& \text { OR }
\end{aligned}
$$

$$
\begin{aligned}
11111101.0110 & =-42 \times 2^{-4} \\
& =-42 / 16 \\
& =-2.625
\end{aligned}
$$

REPEATED BINARY FRACTIONS

Not all fractions can be represented exactly using a finite representation You've seen this before in decimal notation where the fraction $1 / 3$ (among others) requires an infinite number of digits to represent (0.3333 ...).

In binary, a great many fractions that you've grown attached to require an infinite number of bits to represent exactly.

$$
\text { Example: } \quad \begin{aligned}
1 / 10 & =0.1_{10}=0.0 \overline{0011} \ldots_{2}=0.1 \overline{9} \cdots_{16} \\
1 / 5 & =0.2_{10}=0 . \overline{0011} \ldots_{2}=0 . \overline{3} \cdots_{16} \\
1 / 3 & =0.3_{10}=0 . \overline{01} \ldots_{2}=0 . \overline{5} \ldots_{16}
\end{aligned}
$$

finite Representations

- Computers use a finite set of bits (or certain fixed-sized bit clusters) to represent numbers.
- In fact, everything that a realizable computer does is limited by a finite set of bits.
- Through your mastery of mathematics, you've gradually grown used to infinite representations. So much so that finite representations seem odd
- One type of infinity that you've grown used to: Infinite digits
...00000000042.0000000000...
. . .00000000000.0000000000 . . . 001000
10000000...00000000000.0
- The concept an infinite supply of zero digits is conceptually elegant, but difficult to physically implement

SIDE EFFECTS OF bEING FINITE

These examples assume a finite 16 -bit representation

- You can "overflow"

$$
\begin{aligned}
& 32767_{10}+1_{10}=-32768_{10} \quad \begin{array}{r}
0111111111111111_{2} \\
+\frac{0000000000000001_{2}}{100000000000000 \theta_{2}}
\end{array} \\
& -20000_{10}-20000_{10}=25536_{10} \quad 1011000111100000_{2} \\
& +\begin{array}{l}
+1011000111100000_{2}^{2} \\
\hline 0110 \quad 001111000000_{2}
\end{array}
\end{aligned}
$$

- Certain numbers can't be negated

$$
\begin{aligned}
-32768_{10}=-32768_{1 \theta}
\end{aligned} \quad \begin{aligned}
& 1000000000000000_{2} \\
& 0111111111111111_{2} \\
& +
\end{aligned} \begin{aligned}
& 0000000000000001_{2}^{2} \\
& 1000000000000000_{2}
\end{aligned}
$$

bias notation

There is yet one more way to represent signed integers, which is surprisingly simple. It involves subtracting a fixed constant from a given unsigned number. This representation is called "Bias Notation".

$$
v=\sum_{i=0}^{n-1} 2^{i} b_{i}-\text { Bias }
$$

Example of Bias 127:

$$
\begin{array}{rrr}
9 \times 2^{4}= & 144 \\
+\quad 6 \times 2^{0}= & 6
\end{array}
$$

Adding 2 numbers requires a subtraction to fix the result

Why? Monotonicity when viewed as an unsigned number

floating point numbers

Another way to represent numbers is to use a notation similar to scientific Notation. This format can be used to represent numbers with fractions $\left(3.90 \times 10^{-4}\right)$, very small numbers $\left(1.60 \times 10^{-19}\right)$, and large numbers $\left(6.02 \times 10^{23}\right)$. This notation uses two fields to represent each number. The first part represents a normalized fraction (called the significand), and the second part represents the exponent (i.e. the position of the "floating" binary point).

Normalized Fraction $\times 2^{\text {Exponent }}$

"dynamic range" "bits of accuracy"

IEEE 754 FORMAT

- Single precision format

The exponent is
represented in bias 127 notation. Why?
$v=-1^{5} \times 1$.Significand $\times 2^{\text {Exponent-127 }}$

- Example: Normalize:

IEEE 754 LIMITS AND FEATURES

- Single precision limitations
- A little more than 7 decimal digits of precision
- Minimum positive normalized value: $\sim_{1.18} \times 10^{-38}$
- Maximum positive normalized value: $\sim_{3.4 \times 10^{38}}$
- Inaccuracies become evident after multiple single precision operations
- Double precision format

Bits you can see

The smallest element of a visual display is called a "pixel". Pixels have three independent color components that generate most of the perceivable color range.

- Why three and what are they
- How are they represented in A computer?
- First, let's discuss this notion of perceivable

IT STARTS WITH THE EVE

- The photosensitive part of the eye is called the retina.
- The retina is largely composed of two cell types, called rods and cones.
- Cones are responsible for color perception.
- Cones are most dense within the fovea.

- There are three types of cones, referred to as S, M, and L whose spectral sensitivity varies with wavelength.

1.35 mm from rentina center

8 mm from rentina center

WHY WE SEE IN COLOR

- Pure spectral colors simulate all cones to some extent.
- Mixing multiple colors can stimulate the cones to respond in a way that is indistinguishable from a pure color.
- Perceptually identical sensations are called metamers.
- This allows us to use just three colors to generate all others.

HOW COLORS ARE REPRESENTED

- Each pixel is stored as three primary parts
- Red, green, and blue
- Usually around 8-bits per channel
- Pixels can have individual R,G,B components or they can be stored indirectly via a "look-up table"
 or Lookup Table

COLOR SPECIFICATIONS

Web colors:

Name	Hex	Decimal Integer	Fractional
Orange	\#FFA500	$(255,165,0)$	$(1.0,0.65,0.0)$
Sky Blue	\#87CEEB	$(135,206,235)$	$(0.52,0.80,0.92)$
Thistle	\#D8BFD8	$(216,191,216)$	$(0.84,0.75,0.84)$

Colors are stored as binary too. You'll commonly see them in Hex, decimal, and fractional formats.

SUMMARY

- ALL modern computers represent signed integers using a two's-complement representation
- Two's-complement representations eliminate the need for separate addition and subtraction units
- Addition is identical using either unsigned and two's-complement numbers
- Flnite representations of numbers on computers leads to anomalies
- Floating point numbers have separate fractional and exponent components.

