
08/25/2017 Comp 411 - Fall 2017

4-1-1 Information Please

● Representing Information
as bits

● Number Representations
● Other bits

1

“2 bits, 4 bits, 6 bits a byte!”

08/25/2017 Comp 411 - Fall 2017

What is “Information”?

information, n. Knowledge
communicated or received concerning a
particular fact or circumstance.

2

A Computer Scientist’s definition:

Information resolves uncertainty.
Information is simply that which
cannot be predicted. The less likely a
message is, the more information it
conveys.

08/25/2017 Comp 411 - Fall 2017

Quantifying Information

Suppose you’re faced with N equally probable choices, and
I give you a fact that narrows it down to M choices. Then
you’ve been given:

log2(N/M) bits of information

Examples:
● Outcome of a coin flip: log2(2/1) = 1 bit
● The roll of one die?
● Someone tells you that their 7-digit

phone number is a palindrome?

3

(Claude Shannon, 1948)

log2(10
7/104) = ~9.966 bits

log2(6/1) = ~2.6 bits

08/25/2017 Comp 411 - Fall 2017

Another Example: Sum of 2 dice

i2 = log2(36/1) = 5.170 bits
i3 = log2(36/2) = 4.170 bits
i4 = log2(36/3) = 3.585 bits
i5 = log2(36/4) = 3.170 bits
i6 = log2(36/5) = 2.848 bits
i7 = log2(36/6) = 2.585 bits
i8 = log2(36/5) = 2.848 bits
i9 = log2(36/4) = 3.170 bits
i10 = log2(36/3) = 3.585 bits
i11 = log2(36/2) = 4.170 bits
i12 = log2(36/1) = 5.170 bits

4

The average information provided by the sum of 2 dice is: 3.274

The average information of a process is called its Entropy.

08/25/2017 Comp 411 - Fall 2017

Show me the bits!

● Is there a concrete ENCODING that achieves its information
content?

● Can the sum of two dice REALLY
be represented using 3.274 bits?

● If so, how?
● The fact is, the average

information content is a strict
lower-bound on how small of a
representation that we can achieve.

● In practice, it is difficult to reach
this bound. But, we can come very close.

5

08/25/2017 Comp 411 - Fall 2017

Variable-Length Encoding

● Of course we can use differing numbers of "bits" to represent
each item of data

● This is particularly useful if all items are not equally likely
● Equally likely items lead to fixed length encodings:

○ Ex. Encode a "particular" roll of 5?
○ {(1,4),(2,3),(3,2),(4,1)} which are equally likely if we use fair dice

○ 00 = (1,4), 01 = (2,3), 10 = (3,2), 11 = (4,1)
● Back to the original problem. Let's use this encoding:

2 = 10011 3 = 0101 4 = 011 5 = 001
6 = 111 7 = 101 8 = 110 9 = 000
10 = 1000 11 = 0100 12 = 10010

6

08/25/2017 Comp 411 - Fall 2017

Variable-Length Decoding

2 = 10011 3 = 0101 4 = 011 5 = 001
6 = 111 7 = 101 8 = 110 9 = 000
10 = 1000 11 = 0100 12 = 10010

● Notice how unlikely rolls are encoded using
more bits, whereas likely rolls use fewer bits

● Let’s use our encoding to decode the following bit sequence

● Where did this code come from?

7

08/25/2017 Comp 411 - Fall 2017

Huffman Coding

A simple greedy algorithm for approximating a minimum encoding

1. Find the 2 items with the smallest probabilities
2. Join them into a new *meta* item with probability of their sum
3. Remove the two items and insert the new meta item
4. Repeat from step 1 until there is only one item

8

08/25/2017 Comp 411 - Fall 2017

Converting A Tree to an Encoding

Once the *tree* is constructed, label its edges consistently and follow the
paths from the largest *meta* item to each of the real items to find the
encoding.

2 = 10011 3 = 0101 4 = 011 5 = 001 6 = 111 7 = 101
8 = 110 9 = 000 10 = 1000 11 = 0100 12 = 10010

9

08/25/2017 Comp 411 - Fall 2017

Coding Efficiency

How does this code compare to the information content?

Pretty close. Recall that the lower bound was 3.274 bits.

However, an efficient encoding (as defined by having an average code size
close to the information content) is not always what we want!

Sometimes a uniform code is easier to deal with.

Sometimes redundancy is a good thing.

10

08/25/2017 Comp 411 - Fall 2017

Encoding Considerations

● Encoding schemes that attempt to match the information content of a
data stream remove redundancy. They are data compression techniques.

● Make the information easier to manipulate (fixed-sized encodings)
● However, sometimes our goal in encoding information is increase

redundancy, rather than remove it. Why?
● Adding redundancy can make data resilient to noise (error detecting and

correcting codes)

11

08/25/2017 Comp 411 - Fall 2017

Information Encoding Standards

● "Encoding" is the process of assigning representations
to information

● Choosing an appropriate and efficient encoding is an
engineering challenge (and an art)

● Impacts design at many levels
○ Mechanism (devices, # of components used)
○ Efficiency (# bits used)
○ Reliability (tolerate noise)
○ Security (encryption)

12

08/25/2017 Comp 411 - Fall 2017

Fixed-Size Codes

If all choices are equally likely (or we have no reason to expect otherwise),
then a fixed-size code is often used. Such a code should use at least enough
bits to represent the information content.

ex. Decimal digits 10 = {0,1,2,3,4,5,6,7,8,9}
4-bit BCD (binary coded decimal)
log2(10/1) = 3.322 < 4 bits

ex. ~84 English characters = {A-Z (26), a-z (26), 0-9 (10),
 punctuation (8), math (9),
 financial (5)}

7-bit ASCII (American Standard Code for Information Interchange)
log2(84/1) = 6.392 < 7 bits

13

 BCD
0 - 0000
1 - 0001
2 - 0010
3 - 0011
4 - 0100
5 - 0101
6 - 0110
7 - 0111
8 - 1000
9 - 1001

08/25/2017 Comp 411 - Fall 2017

ASCII

● For letters upper and lower case differ in the 6th "shift" bit
 10XXXXX is upper, and 11XXXXX is lower

● Special "control" characters set upper two bits to 00
 ex. cntl-g → bell, cntl-m → carriage return, cntl-[→ esc

● This is why bytes have 8-bits (ASCII + optional parity). Historically, there
were computers built with 6-bit bytes, which required a special "shift"
character to set case.

14

 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

000 NUL SOH STX ETX EOT ACK ENQ BEL BS HT LF VT FF CR SO SI

001 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

010 ! " # $ % & ' () * + , - . /

011 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

100 @ A B C D E F G H I J K L M N O

101 P Q R S T U V W X Y Z [\] ^ _

110 ` a b c d e f g h i j k l m n o

111 p q r s t u v w x y z { | } ~ DEL

08/25/2017 Comp 411 - Fall 2017

Unicode

● ASCII is biased towards western languages. English in particular.
● There are, in fact, many more than 256 characters in common

use:
 â, ö, ß, ñ, è, ¥, £, 揗, 敇, 횝, カ, ℵ, ℷ, ж, క

● Unicode is a worldwide standard that supports all languages,
special characters, classic, extinct, and arcane.

● Several encoding variants 16-bit (UTF-8)
● Variable length (as determined by first byte)

15

08/25/2017 Comp 411 - Fall 2017

Encoding Positive Integers

It is straightforward to encode positive integers as a sequence of bits. Each
bit is assigned a weight. Ordered from right to left, these weights are
increasing powers of 2. The value of an n-bit number encoded in this fashion
is given by the following formula:

16

0 1 1 1 1 1 1 0 0 0 0 1

211 210 29 28 27 26 25 24 23 22 21 20

20 = 1
+ 25 = 32
+ 26 = 64
+ 27 = 128
+ 28 = 256
+ 29 = 512
+ 210 = 1024
 2016

08/25/2017 Comp 411 - Fall 2017

Favorite Bits

● You are going to have to get accustomed to working in binary.
Specifically for Comp 411, but it will be helpful throughout your career as
a computer scientist.

● Here are some helpful guides:
1. Memorize the first 10 powers of 2

20 = 1 21 = 2 22 = 4 23 = 8 24 = 16
25 = 32 26 = 64 27 = 128 28 = 256 29 = 512

2. Memorize the prefixes for powers of 2 that are multiples of 10

210 = Kilo (1024) 240 = Tera (10244)
220 = Mega (1024*1024) 250 = Peta (10245)
230 = Giga (1024*1024*1024) 260 = Exa (10246)

17

08/25/2017 Comp 411 - Fall 2017

Tricks with Bits

● The first thing that you'll do a lot of is cluster groups of
contiguous bits.

● Using the binary powers that are multiples of 10 we can do the
most basic clustering.
1. When you convert a binary number to decimal, first break it down
 from the right into clusters of 10 bits.
2. Then compute the value of the leftmost remaining bits (1)
3. Find the appropriate prefix (GIGA)
4. Often this is sufficient (might need to round up)

18

A “Giga” something or other

08/25/2017 Comp 411 - Fall 2017

Other Helpful Clusterings

Oftentimes we will find it convenient to cluster groups of bits
together for a more compact written representation. Clustering by 3
bits is called Octal, and it is often indicated with a leading zero, 0.
Octal is not that common today.

19

08/25/2017 Comp 411 - Fall 2017

One more Clustering

Clusters of 4 bits are used most frequently. This representation is
called hexadecimal. The hexadecimal digits include 0-9, and A-F, and each
digit position represents a power of 16. Commonly indicated with a
leading "0x".

20

08/25/2017 Comp 411 - Fall 2017

Summary and Next Time

● Information is all about bits, Entropy
● Using bits to encode things

○ Efficient variable-length encodings
○ Redundancy

● Next: more about encoding numbers
○ Signed Numbers (there is a choice)
○ Non-integers (Fractions and Fixed-point)
○ Floating point numbers

● Encoding other things...

21

