
L24 – Virtual Machines & the OS Kernel 1 Comp 411– Fall 2015 12/01/2015

Virtual Machines & the OS Kernel

Study Session Tomorrow Night, 12/2 5:30-7:00pm in SN014
Final Exam on Saturday 12/5, 12:00pm-3:00pm in SN014
Final: ~50 questions,

 ~½ covering materials since 10/29, ~½ comprehensive

L24 – Virtual Machines & the OS Kernel 2 Comp 411– Fall 2015 12/01/2015

Power of Contexts: Sharing a CPU

Virtual
Memory 1 Virtual

Memory 2 Physical
Memory

1. TIMESHARING among several programs --
• Programs alternate running in time slices called “Quanta”
• Separate context for each program
• OS loads appropriate context into pagemap when switching among pgms

2. Separate context for OS “Kernel” (eg, interrupt handlers)...
• “Kernel” vs “User” contexts
• Switch to Kernel context on interrupt;
• Switch back on interrupt return.

Every application can be
 written as if it has access
 to all of memory, without
 considering where other
 applications reside.

More than Virtual Memory
 A VIRTUAL MACHINE

What is this
 OS KERNEL
 thingy?

page
table

page
table

L24 – Virtual Machines & the OS Kernel 3 Comp 411– Fall 2015 12/01/2015

Building a Virtual Machine

PROCESS #0 PROCESS #1
virtual

memory
virtual

memory

physical
memory

P1
P0
P1

shared
?
P0
P1
?
?

P0

Context #1 Context #0

Goal: give each program its own “VIRTUAL MACHINE”;
 programs don’t “know” about each other…

Abstraction: create a PROCESS, with its own
 • machine state: $1, …, $31 • program (w/ possibly shared code)
 • context (pagemap) • virtual I/O devices (console…)
 • stack

L24 – Virtual Machines & the OS Kernel 4 Comp 411– Fall 2015 12/01/2015

Multiplexing the CPU

PROCESS
1

PROCESS
0

Operating
System

1

2 3 4 5

Vi
rt

ua
l t

im
e

1.  Running in process #0
2.  Stop execution of process #0

 either because of explicit yield or
 some sort of timer interrupt;
 trap to handler code, saving
 current PC in $27 ($k1)

3.  First: save process #0 state
(regs, context) Then: load
process #1 state (regs, context)

4.  “Return” to process #1: just like a
 return from other trap handlers
(ex. jr $27) but we’re returning
 from a different trap than
 happened in step 2!

5.  Running in process #1

When this process is interrupted.
We RETURN to this process!

And, vice versa.
Result: Both processes get executed,

 and no one is the wiser

L24 – Virtual Machines & the OS Kernel 5 Comp 411– Fall 2015 12/01/2015

Stack-Based Interrupt Handling

BASIC SEQUENCE:
• Program A is running when some EVENT happens.
• PROCESSOR STATE saved on stack (like a procedure CALL)
• The HANDLER program to be run is selected.
• HANDLER state (PC, etc) installed as new processor state.
• HANDLER runs to completion
• State of interrupted program A popped from stack and
re-installed, JMP returns control to A

• A continues, unaware of interruption.

SAVED
STATE
OF A

old <SP>

<SP>

CHARACTERISTICS:
• TRANSPARENT to interrupted program!
• Handler runs to completion before returning
• Obeys stack discipline: handler can "borrow" stack from

 interrupted program (and return it unchanged) or use a
 special handler stack.

L24 – Virtual Machines & the OS Kernel 6 Comp 411– Fall 2015 12/01/2015

miniMIPS Interrupt Handling
Minimal Implementation:

• Check for EVENTS before each instruction fetch.
• On synchronous or asynchronous EVENT:

• save PC into $27, ($k1);
• INSTALL new PC: 0x80000000 +

(0:RESET, 0x40:EXCEPTION, 0x80:INTERRUPT)

Handler Coding:
• Save state in “User” structure
• Call C procedure to handle the exception
• re-install saved state from “User”
• Return to $27, ($k1)

WHERE to find handlers?
miniMIPS Scheme: WIRE IN a high-memory

address for each exception handler entry point

Real MIPS alternative: WIRE IN the address of a TABLE
 of handler addresses (“interrupt vectors”)

0x80000040:

0x80000080:

Reset Handler

Syscall Handler

IRQ Handler

Kernel Code

Kernel Data

Kernel
stack

0xffffffff:

“KERNEL”
Addresses

“bottom” of
 USER
 stack

Program Code
Static Data

Dynamic Data

0x00400000:

0x10000000:

0x80000000:

“USER”
Addresses

L24 – Virtual Machines & the OS Kernel 7 Comp 411– Fall 2015 12/01/2015

External (Asynchronous) Interrupts
Example:

 System maintains current time of day (TOD) count at a well-known
 memory location that can be accessed by programs. But...this value must
 be updated periodically in response to clock EVENTs, i.e. signal triggered
 by 60 Hz clock hardware.

Program A (Application)
• Executes instructions of the user program.
• Doesn’t want to know about clock hardware, interrupts, etc!!
• Can access TOD programmatically by examining a well-known memory

 location.

Clock Handler
• GUTS: Sequence of instructions that increments TOD. Written in C.
• Entry/Exit sequences save & restore interrupted state, call the C

 handler. Written as assembler “stubs”.

L24 – Virtual Machines & the OS Kernel 8 Comp 411– Fall 2015 12/01/2015

Interrupt Handler Coding
long TimeOfDay;
struct Mstate { int R1,R2,…,R31 } User;

/* Executed 60 times/sec */
Clock_Handler(){
 TimeOfDay = TimeOfDay + 1;
}

Clock_h:
 lui $k0,(User>>16) # make $k0 point to
 ori $k0,$k0,User # “User” struct

sw $1,0($k0) # Save registers of
sw $2,4($k0) # interrupted
... # application pgm...
sw $31,124($k0) # program
add $sp,$0,KStack # Use KERNEL stack
jal Clock_Handler # call handler
lw $1,0($k0) # Restore saved
lw $2,4($k0) # registers
...
lw $31,124($k0)
jr $k1 # Return to app.

Handler
(written in C)

“Interrupt stub”
(written in assy.)

Recall $k0 ($26) and
 $k1 ($27) are reserved
 for use by the kernel,
 and that the address
 of the next instruction
 before the exception is
 saved in $k1 ($27)

L24 – Virtual Machines & the OS Kernel 9 Comp 411– Fall 2015 12/01/2015

Time-Sharing the CPU

 We can make a small modification to our clock handler
 implement time sharing.

 A Quantum is that smallest time-interval that we
 allocate to a process, typically this might be 50 to 100
 mS. (Actually, most OS Kernels vary this number based
 on the processes priority).

long TimeOfDay;
struct Mstate { int R1,R2,…,R31 } User;

/* Executed 60 times/sec */
Clock_Handler(){
 TimeOfDay = TimeOfDay + 1;
 if (TimeOfDay % QUANTUM == 0) Scheduler();
}

Our clock handler calls
 another function

L24 – Virtual Machines & the OS Kernel 10 Comp 411– Fall 2015 12/01/2015

Simple Timesharing Scheduler
long TimeOfDay;
struct Mstate { int R1,R2,…,R31 } User;
.

.

.
struct PCB { /* A Process Control Block */

struct MState State; /* Processor state */
Context PageMap; /* VM Map for proc */
int DPYNum; /* Console number */

} ProcTbl[N]; /* one per process */

int Cur; /* “Active” process */

Scheduler() {

 ProcTbl[Cur].State = User; /* Save Cur state */
Cur = (Cur+1)%N; /* Incr mod N */
User = ProcTbl[Cur].State; /* Install for next User */

}

L24 – Virtual Machines & the OS Kernel 11 Comp 411– Fall 2015 12/01/2015

Avoiding Re-Entrance
 Handlers which are interruptable are called RE-ENTRANT, and pose special
 problems... miniMIPs, like many systems, disallows reentrant interrupts!
 Mechanism: Interrupts are disabled in “Kernel Mode” (PC >= 0x80000000):

USER mode
(Application)

KERNEL mode
(Op Sys)

main()
{ ...
 ...
 ...
}

Interrupt
Vector

Page
Fault

Handler

Clock
Handler

SYSCALL
Handlers

PC = 0.........

PC = 1.........

Processor State K-Mode
 Flag: PC31 = 1 for Kernel
 Mode!

User
(saved
state)

Kernel
Stack

That’s where the
 rest of memory is!

L24 – Virtual Machines & the OS Kernel 12 Comp 411– Fall 2015 12/01/2015

Polled I/O

CPU flag
data

INTERFACE DEVICE

loop: lw $t0, flag($t1) # $t1 points to a
 beq $t0,$0,loop # keyboard structure
 lw $t0, data($t1) # process keystroke
 …

PROBLEMS:
• Wastes (physical) CPU while busy-waiting
 (FIX: Multiprocessing, codestripping, etc)
• Poor system modularity: running pgm MUST know about ALL devices.
• Uses up CPU cycles even when device is idle!

Application code deals directly with I/O (eg, by busy-waiting):

KEY HIT : Flag←1, Data ← ASCII

“kb->flag” and
“kb->data” are just
 memory locations

Assumes:
 typedef struct Device {
 int flag, data;
 } Keyboard;

L24 – Virtual Machines & the OS Kernel 13 Comp 411– Fall 2015 12/01/2015

Interrupt-driven I/O

struct Device {
 int flag, data;
} Keyboard;
int inptr=0, outptr = 0;
int Buffer[100];

KeyboardHandler(struct Mstate *s) {
 Buffer[inptr] = Keyboard.data;
 inptr = (inptr + 1) % 100;
}

OPERATION: NO attention to Keyboard during normal operation
• on key strike: hardware asserts IRQ to request interrupt
• USER program interrupted, PC+4 saved in $k1
• state of USER program saved on KERNEL stack;
• KeyboardHandler (a “device driver”) is invoked, runs to completion;
• state of USER program restored; program resumes.

TRANSPARENT to USER program.

Keyboard Interrupt Handler (in O.S. KERNEL):

Each keyboard
 has an
 associated
 buffer

That’s how data
 gets into the
 buffer. How
 does it get out?

L24 – Virtual Machines & the OS Kernel 14 Comp 411– Fall 2015 12/01/2015

ReadKey SYSCALL: Attempt #1

ReadKEY_h()
{

 int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum)) {

 /* busy wait loop */
}
User.R2 = ReadInputBuffer(kbdnum);

}

A system call (syscall) is an instruction that transfers control to the kernel
 so it can satisfy some user request. Kernel returns to user program when
 request is complete.

First draft of a ReadKey syscall handler: returns next keystroke to user

Problem: Can’t interrupt code running in the supervisor mode…
 so the buffer never gets filled.

(Can be implemented as a “synchronous” interrupt, a.k.a. Illop)

Each process has an index to a keyboard

L24 – Virtual Machines & the OS Kernel 15 Comp 411– Fall 2015 12/01/2015

ReadKey SYSCALL: Attempt #2
A keyboard SYSCALL handler

(slightly modified, eg to support a Virtual Keyboard):

ReadKEY_h()
{

 int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

 User.R27 = User.R27 - 4;
} else
 User.R2 = ReadInputBuffer(kbdnum);

}

That’s a
funny way
to write
a loop

Problem: The process just wastes its time-slice waiting for some
one to hit a key...

L24 – Virtual Machines & the OS Kernel 16 Comp 411– Fall 2015 12/01/2015

ReadKey SYSCALL: Attempt #3

BETTER: On I/O wait, YIELD remainder of time slot (quantum):

ReadKEY_h()
{

 int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

 User.R27 = User.R27 - 4;
 Scheduler();

} else
 User.R2 = ReadInputBuffer(kbdnum);

}

RESULT: Better CPU utilization!!
FALLACY:

Timesharing causes a CPUs to be less efficient

L24 – Virtual Machines & the OS Kernel 17 Comp 411– Fall 2015 12/01/2015

Sophisticated Scheduling
To improve efficiency further, we can avoid scheduling processes in

 prolonged I/O wait:
•  Processes can be in ACTIVE or WAITING (“sleeping”) states;
•  Scheduler cycles among ACTIVE PROCESSES only;
•  Active process moves to WAITING status when it tries to

 read a character and buffer is empty;
•  Waiting processes each contain a code (eg, in PCB)

 designating what they are waiting for (eg, keyboard N);
•  Device interrupts (eg, on keyboard N) move any processes

 waiting on that device to ACTIVE state.
UNIX kernel utilities:

•  sleep(reason) - Puts CurProc to sleep. “reason” is an
 arbitrary value providing a condition for reactivation.

•  wakeup(reason) - Makes active any and all processes in
 sleep(reason).

L24 – Virtual Machines & the OS Kernel 18 Comp 411– Fall 2015 12/01/2015

ReadKey SYSCALL: Attempt #4

ReadKEY_h() {
 …
 if (BufferEmpty(kbdnum)) {
 User.R27 = User.R27 - 4;
 sleep(kbdnum);
 …
}

sleep(status s) {
 ProcTbl[Cur].status = s;
 Scheduler()
}

Scheduler() {
 …
 while (ProcTbl[i].status != 0) {
 i = (i+1)%N;
 }
 …
}

wakeup(status s) {
 for (i = 0; i < N; i += 1) {
 if (ProcTbl[i].status == s)
 PCB[i].status = 0;
 }
} KEYhit_h() {

 …
 WriteBuffer(kbdnum, key)
 wakeup(kbdnum);
 …
}

SYSCALL from application

INTERRUPT from Keyboard n

L24 – Virtual Machines & the OS Kernel 19 Comp 411– Fall 2015 12/01/2015

A “Typical” OS layer cake

Hardware

Registers

ALUs

PCs

Caches

Kernel

Operating System

Applications

Device Drivers

Scheduler
Process Control
Blocks (PCBs)

Page Tables

An OS is the Glue that
 holds a computer
 together.

 - Mediates between
 competing requests
 - Resolves
 names/bindings
 - Maintains
 order/fairness

KERNEL - a RESIDENT
 portion of the O/S that
 handles the most common
 and fundamental service
 requests.

Device
Queues

Network Interfaces

Security

File system

Shared
Libraries

Word Processors

Graphical User
Interface (GUI)

Games

Spread Sheets

Web
Browser

L24 – Virtual Machines & the OS Kernel 20 Comp 411– Fall 2015 12/01/2015

A “Thin Slice” of OS organization

“Applications” are quasi-parallel
 “PROCESSES”
 on

 “VIRTUAL MACHINES”,
each with:
- CONTEXT

 (virtual address space)
- Virtual I/O devices

O.S. KERNEL has:
- Interrupt handlers
- SYSCALL (trap) handlers
- Scheduler
- PCB structures containing the
 state of inactive processes

Scheduler

KERNEL

P1 P2

syscall 1 handler

syscall 0 handler

I/O Handler

Device
0

Alarm Clock

I/O Handler

Device
1

…
DPYNum=0
…
DPYNum=1

PCBs:
 P1:

 P2:

loop:
 addi $v0,$0,0
 syscall
 ...
 addi $v0,$0,1
 syscall
 ...
 beq $0,$0,loop

loop:
 addi $v0,$0,0
 syscall
 ...
 addi $v0,$0,1
 syscall
 ...
 beq $0,$0,loop

L24 – Virtual Machines & the OS Kernel 21 Comp 411– Fall 2015 12/01/2015

Technology

Architecture

411 was an introduction to
Computer Science “Systems”

Applications

L24 – Virtual Machines & the OS Kernel 22 Comp 411– Fall 2015 12/01/2015

Systems: 2015

Tablet computing, Client computing (Chrome,
 HTML 5), Cloud computing, E-commerce,
 Android, Arduino, Video Games, Wireless,

 Streaming Media, …

CMOS: 4.3 billion transistors/chip
(2014 15-core Xeon Ivy Bridge-EX)

10x transistors every 5 years
1% performance/week!

Von Neumann Architectures, Multi-Core
Procedures, Objects, Processes

(hidden: pipelining, superscalar, SIMD, …)

L24 – Virtual Machines & the OS Kernel 23 Comp 411– Fall 2015 12/01/2015

Systems 2025?

Natural language/speech interfaces, Virtual
 Assistants, Computer vision, systems that “learn”

 rather than require programming, field-programmable
 microbes, direct brain interfaces, human

 augmentation …

CMOS:
 450 billion transistors

20 GHz clock

Von Neumann Architecture???
1024-way multicore?

Neural Nets?
How will we program them?

Computer
Science is the
fastest
changing
field in the
history of
mankind!

This is the
 hard part.

This stuff is
 relatively
 easy to
 predict.

To predict his
 stuff, follow
 the news and
 think creatively

L24 – Virtual Machines & the OS Kernel 24 Comp 411– Fall 2015 12/01/2015

What’s next?
Some options…

Comp 401
Foundation of
Programming

Comp 410
Data

Structures

Comp 411
Computer

Organization

Comp 550
Algorithms &

Analysis

Comp 411 was
necessarily broad

… but not very deep

Comp 520
Compilers

Comp 530
Operating Systems

Comp 455
Models of Languages

& Computation

Comp 541
Digital Logic

Comp 521
Files &

Databases

Undergrad Options

Comp 744
VLSI System Design

Comp 633
Parallel & Distributed

Computing

Comp 740
Computer Arch

& Implementation

Comp 741
Elements of

H/W Systems

Graduate
Options

Should I take or
 avoid these?

Comp 555
Bio-Algorithms

L24 – Virtual Machines & the OS Kernel 25 Comp 411– Fall 2015 12/01/2015

THE END!

Computers are tools
that are designed to realize
a programmer’s dreams.

The only problem
with Haiku is that you just
 get started and then…

