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Virtual Machines & the OS Kernel 

Study Session Tomorrow Night, 12/2 5:30-7:00pm in SN014 
Final Exam on Saturday 12/5, 12:00pm-3:00pm in SN014 
Final: ~50 questions,  

 ~½ covering materials since 10/29, ~½ comprehensive 
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Power of Contexts: Sharing a CPU 

Virtual  
Memory 1 Virtual  

Memory 2 Physical  
Memory 

1. TIMESHARING among several programs -- 
• Programs alternate running in time slices called “Quanta” 
• Separate context for each program 
• OS loads appropriate context into pagemap when switching among pgms 

2. Separate context for OS “Kernel” (eg, interrupt handlers)... 
• “Kernel” vs “User” contexts 
• Switch to Kernel context on interrupt; 
• Switch back on interrupt return. 

Every application can be
 written as if it has access
 to all of memory, without
 considering where other
 applications reside. 

More than Virtual Memory 
   A VIRTUAL MACHINE 

What is this
 OS KERNEL
 thingy? 

page  
table 

page  
table 
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Building a Virtual Machine 

PROCESS #0 PROCESS #1 
virtual 

memory 
virtual 

memory 

physical 
memory 

P1 
P0 
P1 

shared 
? 
P0 
P1 
? 
? 

P0 

Context #1 Context #0 

Goal: give each program its own “VIRTUAL MACHINE”;  
 programs don’t “know” about each other… 

Abstraction: create a PROCESS, with its own 
  • machine state: $1, …, $31  • program (w/ possibly shared code) 
  • context (pagemap)    • virtual I/O devices (console…) 
  • stack 
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Multiplexing the CPU 

PROCESS  
1 

PROCESS  
0 

Operating
System 

1 

2 3 4 5 

Vi
rt

ua
l t

im
e 

1.  Running in process #0 
2.  Stop execution of process #0

 either because of explicit yield or
 some sort of timer interrupt;  
 trap to handler code, saving  
 current PC in $27 ($k1) 

3.  First: save process #0 state  
(regs, context) Then: load  
process #1 state (regs, context) 

4.  “Return” to process #1: just like a
 return from other trap handlers  
(ex. jr $27) but we’re returning
 from a different trap than
 happened in step 2! 

5.  Running in process #1 

When this process is interrupted. 
We RETURN to this process! 

And, vice versa.  
Result: Both processes get executed, 

 and no one is the wiser 
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Stack-Based Interrupt Handling 

BASIC SEQUENCE: 
• Program A is running when some EVENT happens. 
• PROCESSOR STATE saved on stack (like a procedure CALL) 
• The HANDLER program to be run is selected. 
• HANDLER state (PC, etc) installed as new processor state. 
• HANDLER runs to completion 
• State of interrupted program A popped from stack and  
re-installed, JMP returns control to A 

• A continues, unaware of interruption. 

SAVED  
STATE  
OF  A 

old <SP> 

<SP> 

CHARACTERISTICS: 
• TRANSPARENT  to interrupted program! 
• Handler runs to completion before returning 
• Obeys stack discipline: handler can "borrow" stack from

 interrupted program (and return it unchanged) or use a
 special handler stack. 
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miniMIPS Interrupt Handling 
Minimal Implementation: 

• Check for EVENTS before each instruction fetch. 
• On synchronous or asynchronous EVENT: 

• save PC into $27, ($k1); 
• INSTALL new PC: 0x80000000 +  

(0:RESET, 0x40:EXCEPTION, 0x80:INTERRUPT)  

Handler Coding: 
• Save state in “User” structure 
• Call C procedure to handle the exception 
• re-install saved state from “User” 
• Return to $27, ($k1) 

WHERE to find handlers? 
miniMIPS Scheme:  WIRE IN a high-memory  

address for each exception handler entry point 

Real MIPS alternative: WIRE IN the address of a TABLE
 of handler addresses (“interrupt vectors”) 

0x80000040: 

0x80000080: 

Reset Handler 

Syscall Handler 

IRQ Handler 

Kernel Code 

Kernel Data 

Kernel 
stack 

0xffffffff: 

“KERNEL” 
Addresses 

“bottom” of 
 USER
 stack 

Program Code 
Static Data 

Dynamic Data 

0x00400000: 

0x10000000: 

0x80000000: 

“USER” 
Addresses 
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External (Asynchronous) Interrupts 
Example: 

 System maintains current time of day (TOD) count at a well-known
 memory location that can be accessed by programs. But...this value must
 be updated periodically in response to clock EVENTs, i.e. signal triggered
 by 60 Hz clock hardware. 

Program A (Application) 
• Executes instructions of the user program. 
• Doesn’t want to know about clock hardware, interrupts, etc!! 
• Can access TOD programmatically by examining a well-known memory

 location. 

Clock Handler 
• GUTS: Sequence of instructions that increments TOD.  Written in C. 
• Entry/Exit sequences save & restore interrupted state, call the C

 handler.  Written as assembler “stubs”. 
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Interrupt Handler Coding 
long TimeOfDay; 
struct Mstate { int R1,R2,…,R31 } User;    

/* Executed 60 times/sec */ 
Clock_Handler(){ 
   TimeOfDay = TimeOfDay + 1; 
} 

Clock_h: 
    lui   $k0,(User>>16)   # make $k0 point to 
    ori   $k0,$k0,User   # “User” struct 

sw    $1,0($k0)   # Save registers of 
sw    $2,4($k0)   # interrupted 
...    # application pgm... 
sw    $31,124($k0)   # program 
add   $sp,$0,KStack   # Use KERNEL stack 
jal   Clock_Handler   # call handler 
lw    $1,0($k0)   # Restore saved 
lw    $2,4($k0)   # registers 
... 
lw    $31,124($k0) 
jr    $k1     # Return to app. 

Handler 
(written in C) 

“Interrupt stub” 
(written in assy.) 

Recall  $k0 ($26) and
 $k1 ($27) are reserved
 for use by the kernel,
 and that the address
 of the next instruction
 before the exception is
 saved in $k1 ($27) 
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Time-Sharing the CPU 

    We can make a small modification to our clock handler
 implement time sharing. 

 A Quantum is that smallest time-interval that we
 allocate to a process, typically this might be 50 to 100
 mS. (Actually, most OS Kernels vary this number based
 on the processes priority).   

long TimeOfDay; 
struct Mstate { int R1,R2,…,R31 } User;    

/* Executed 60 times/sec */ 
Clock_Handler(){ 
   TimeOfDay = TimeOfDay + 1; 
   if (TimeOfDay % QUANTUM == 0) Scheduler(); 
} 

Our clock handler calls
 another function 
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Simple Timesharing Scheduler 
long TimeOfDay; 
struct Mstate { int R1,R2,…,R31 } User; 
. 

. 

. 
struct PCB {                    /* A Process Control Block */ 

struct MState State;   /* Processor state   */ 
Context PageMap;    /* VM Map for proc   */ 
int DPYNum;    /* Console number    */ 

} ProcTbl[N];     /* one per process   */ 

int Cur;     /* “Active” process  */ 

Scheduler() { 

   ProcTbl[Cur].State = User;  /* Save Cur state */ 
Cur = (Cur+1)%N;    /* Incr mod N     */ 
User = ProcTbl[Cur].State;  /* Install for next User */ 

} 
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Avoiding Re-Entrance 
 Handlers which are interruptable are called RE-ENTRANT, and pose special
 problems... miniMIPs, like many systems, disallows reentrant interrupts!  
 Mechanism: Interrupts are disabled in “Kernel Mode” (PC >= 0x80000000): 

USER mode 
(Application) 

KERNEL mode 
(Op Sys) 

main() 
{ ... 
  ... 
  ... 
} 

Interrupt 
Vector 

Page 
Fault 

Handler 

Clock 
Handler 

SYSCALL 
Handlers 

PC = 0......... 

PC = 1......... 

Processor State K-Mode
 Flag: PC31 = 1 for Kernel
 Mode! 

User 
(saved 
state) 

Kernel 
Stack 

That’s where the
 rest of memory is! 
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Polled I/O 

CPU flag 
data 

INTERFACE DEVICE 

loop: lw   $t0, flag($t1)  # $t1 points to a 
      beq  $t0,$0,loop  # keyboard structure 
      lw   $t0, data($t1)  # process keystroke 
      … 

PROBLEMS: 
• Wastes (physical) CPU while busy-waiting 
  (FIX:  Multiprocessing,  codestripping,  etc) 
• Poor system modularity: running pgm MUST know about ALL devices. 
• Uses up CPU cycles even when device is idle! 

Application code deals directly with I/O (eg, by busy-waiting): 

KEY HIT : Flag←1, Data ← ASCII 

“kb->flag” and  
“kb->data” are just
 memory locations 

Assumes: 
  typedef struct Device { 
    int flag, data; 
  } Keyboard; 
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Interrupt-driven I/O 

struct Device { 
  int flag, data; 
} Keyboard; 
int inptr=0, outptr = 0; 
int Buffer[100]; 

KeyboardHandler(struct Mstate *s) { 
  Buffer[inptr] = Keyboard.data; 
  inptr = (inptr + 1) % 100; 
} 

OPERATION:  NO attention to Keyboard during normal operation 
• on key strike: hardware asserts IRQ to request interrupt 
• USER program interrupted, PC+4 saved in $k1 
• state of USER program saved on KERNEL stack; 
• KeyboardHandler (a “device driver”) is invoked, runs to completion; 
• state of USER program restored; program resumes. 

TRANSPARENT to USER program. 

Keyboard Interrupt Handler (in O.S. KERNEL): 

Each keyboard
 has an
 associated
 buffer 

That’s how data
 gets into the
 buffer. How
 does it get out? 
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ReadKey SYSCALL: Attempt #1 

ReadKEY_h() 
{ 

 int kbdnum = ProcTbl[Cur].DPYNum; 
while (BufferEmpty(kbdnum)) { 

 /* busy wait loop */ 
} 
User.R2 = ReadInputBuffer(kbdnum); 

} 

A system call (syscall) is an instruction that transfers control to the kernel
 so it can satisfy some user request.  Kernel returns to user program when
 request is complete. 

First draft of a ReadKey syscall handler: returns next keystroke to user 

Problem: Can’t interrupt code running in the supervisor mode…
 so the buffer never gets filled. 

(Can be implemented as a “synchronous” interrupt, a.k.a. Illop) 

Each process has an index to a keyboard 
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ReadKey SYSCALL: Attempt #2 
A keyboard SYSCALL handler  

(slightly modified, eg to support a Virtual Keyboard): 

ReadKEY_h() 
{ 

 int kbdnum = ProcTbl[Cur].DPYNum; 
if (BufferEmpty(kbdnum)) { 

 User.R27 = User.R27 - 4; 
} else 
   User.R2 = ReadInputBuffer(kbdnum); 

} 

That’s a 
funny way 
to write 
a loop 

Problem: The process just wastes its time-slice waiting for some 
one to hit a key... 
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ReadKey SYSCALL: Attempt #3 

BETTER: On I/O wait, YIELD remainder of time slot (quantum): 

ReadKEY_h() 
{ 

 int kbdnum = ProcTbl[Cur].DPYNum; 
if (BufferEmpty(kbdnum)) { 

 User.R27 = User.R27 - 4; 
 Scheduler( ); 

} else 
   User.R2 = ReadInputBuffer(kbdnum); 

} 

RESULT: Better CPU utilization!! 
FALLACY:  

Timesharing causes a CPUs to be less efficient 
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Sophisticated Scheduling 
To improve efficiency further, we can avoid scheduling processes in

 prolonged I/O wait: 
•  Processes can be in ACTIVE or WAITING (“sleeping”) states; 
•  Scheduler cycles among ACTIVE PROCESSES only; 
•  Active process moves to WAITING status when it tries to

 read a character and buffer is empty; 
•  Waiting processes each contain a code (eg, in PCB)

 designating what they are waiting for (eg, keyboard N); 
•  Device interrupts (eg, on keyboard N) move any processes

 waiting on that device to ACTIVE state. 
UNIX kernel utilities: 

•  sleep(reason) - Puts CurProc to sleep.  “reason” is an
 arbitrary value providing a condition for reactivation. 

•  wakeup(reason) - Makes active any and all processes in
 sleep(reason). 
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ReadKey SYSCALL: Attempt #4 

ReadKEY_h() { 
   … 
   if (BufferEmpty(kbdnum)) { 
      User.R27 = User.R27 - 4; 
      sleep(kbdnum); 
   … 
} 

sleep(status s) { 
   ProcTbl[Cur].status = s; 
   Scheduler() 
} 

Scheduler() { 
   … 
   while (ProcTbl[i].status != 0) { 
      i = (i+1)%N; 
   } 
   … 
} 

wakeup(status s) { 
   for (i = 0; i < N; i += 1) { 
      if (ProcTbl[i].status == s) 
         PCB[i].status = 0; 
   } 
} KEYhit_h() { 

   … 
      WriteBuffer(kbdnum, key) 
      wakeup(kbdnum); 
   … 
} 

SYSCALL from application 

INTERRUPT from Keyboard n 
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A “Typical” OS layer cake 

Hardware 

Registers 

ALUs 

PCs 

Caches 

Kernel 

Operating System 

Applications 

Device Drivers 

Scheduler 
Process Control 
Blocks (PCBs) 

Page Tables 

An OS is the Glue that
 holds a computer
 together. 

  - Mediates between 
    competing requests 
  - Resolves 
     names/bindings 
  - Maintains 
     order/fairness 

KERNEL - a RESIDENT
 portion of the O/S that
 handles the most common
 and fundamental service
 requests. 

Device 
Queues 

Network Interfaces 

Security 

File system 

Shared 
Libraries 

Word Processors 

Graphical User  
Interface (GUI) 

Games 

Spread Sheets 

Web 
Browser 
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A “Thin Slice” of OS organization 

“Applications” are quasi-parallel 
 “PROCESSES”  
           on  

          “VIRTUAL MACHINES”,  
each with: 
- CONTEXT 

 (virtual address space) 
- Virtual I/O devices 

O.S. KERNEL has: 
- Interrupt handlers 
- SYSCALL (trap) handlers 
- Scheduler 
- PCB structures containing the
 state of inactive processes 

Scheduler 

KERNEL 

P1 P2 

syscall 1 handler 

syscall 0 handler 

I/O Handler 

Device 
0 

Alarm Clock 

I/O Handler 

Device 
1 

… 
DPYNum=0 
… 
DPYNum=1 

PCBs: 
    P1: 

    P2: 

loop: 
    addi $v0,$0,0 
    syscall 
    ... 
    addi $v0,$0,1 
    syscall 
    ... 
    beq $0,$0,loop 

loop: 
    addi $v0,$0,0 
    syscall 
    ... 
    addi $v0,$0,1 
    syscall 
    ... 
    beq $0,$0,loop 
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Technology 

Architecture 

411 was an introduction to  
Computer Science “Systems” 

Applications 
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Systems: 2015 

Tablet computing, Client computing (Chrome,
 HTML 5), Cloud computing, E-commerce,
 Android, Arduino, Video Games, Wireless,

 Streaming Media,  … 

CMOS: 4.3 billion transistors/chip  
(2014 15-core Xeon Ivy Bridge-EX) 

10x transistors every 5 years 
1% performance/week! 

Von Neumann Architectures, Multi-Core 
Procedures, Objects, Processes 

(hidden: pipelining, superscalar, SIMD, …) 
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Systems 2025? 

Natural language/speech interfaces, Virtual
 Assistants, Computer vision, systems that “learn”

 rather than require programming, field-programmable
 microbes, direct brain interfaces, human

 augmentation  … 

CMOS:  
 450 billion transistors 

20 GHz clock 

Von Neumann Architecture??? 
1024-way multicore? 

Neural Nets? 
How will we program them? 

Computer  
Science is the  
fastest  
changing  
field in the  
history of  
mankind! 

This is the
 hard part. 

This stuff is
 relatively
 easy to
 predict. 

To predict his
 stuff, follow
 the news and
 think creatively 
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What’s next? 
Some options… 

Comp 401 
Foundation of 
Programming 

Comp 410 
Data 

Structures 

Comp 411 
Computer 

Organization 

Comp 550 
Algorithms & 

Analysis 

Comp 411 was  
necessarily broad 

… but not very deep 

Comp 520 
Compilers 

Comp 530 
Operating Systems 

Comp 455 
Models of Languages  

& Computation 

Comp 541 
Digital Logic 

Comp 521 
Files & 

Databases 

Undergrad Options 

Comp 744 
VLSI System Design 

Comp 633 
Parallel & Distributed 

Computing 

Comp 740 
Computer Arch 

& Implementation 

Comp 741 
Elements of 

H/W Systems 

Graduate 
Options 

Should I take or
 avoid these? 

Comp 555 
Bio-Algorithms 
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THE END! 

Computers are tools 
that are designed to realize 
a programmer’s dreams. 

The only problem 
with Haiku is that you just
 get started and then…  


