Memory Hierarchy

It makes me look faster,
don’t you think?

Still in your Halloween

stume?
cosrine *Memory Flavors

*Principle of Locality
*Program Traces

N
' s *Memory Hierarchies
| sAssociativity
S Midterm #2 Study
Session Tomorrow
(11/13) during lab.

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarc hy 1

What Do We Want in a Memory?

PC > ADDR
INST [+ DOUT
miniMIPS MEMORY
MADDR > ADDR
MDATA |« > DATA
Wr »| RIW
Capacity Latency Cost
Register 1000’s of bits 10 ps $$9$
SRAM 100’s Kbytes 0.2 ns $$%
DRAM 100’s Mbytes 5 ns $
Hard disk* 10’s Tbytes 10 ms ¢
Want? 4 Gbyte 0.2 ns cheap

* non-volatile

Comp 411 - Fall 2015 112/2015 L21 - Memory Hierarchy 2

Tricks for Increasing Throughput

Multiplexed The first thing that should

Address vit lines word lines pop into you mind when
Col. Col. Col. Col. asked to 5peed up a
1 2 o) 2M digital design...
ﬂ-
s H Row 1
3 [N R A A R R A PIPELINING
a ;\l; %: —&l —&l —&l —&l —&l —&l Row 2 Synchronous DRAM
§ (SDRAM)
§ _&' _&' _&' _&' _&' _&' 20nS reads and writes
2
Q

0 0 00 o o ($5 per Ghyte)

memo
— Y Double Data Rate

— cell
N / (one bit) Synchr(o[;lglé? DRAM
] 7 >l Column Multiplexer/Shiﬁzer
clock M
r D Data
12 T, Tz T, out

Comp 411 - Fall 2015 11/12/2015 L21 — Memory Hierarchy 3

-

Solid-State Disks

Modern solid-state disks are a non-volatile (they don’t
forget their contents when powered down) alternative to
dynamic memory. They use a special type of
“floating-gate” transistor to store data. This is done

by applying a electric field large enough to actually cause
carriers (ions) to permanently migrate into the gate, thus —sa—
turning the switch (bit) permanently on. They are, however, 7
hot ideally suited for “main memory”. Reasons:

=
* They tend not to be randomly addressable. You can Samisk

only access data in large blocks, and you need to
sequentially scan through the block to get a
particular value.

300ns read + latency
©6000ns write + latency

($1 per Gbyte)

* Asymmetric read and write times. Writes are
often 10x-20x slower than reads.

* The number of write cycles is limited (Practically 107-10°,
which seems like a lot for saving images, but a single
variable might be written that many times in a normal
program), and writes are generally an entire block at a time.

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy 4

Traditional Hard Disk Drives

figures from www.pctechguide.com

Typical high-end drive: /?\,/*T;;T\\\?\
e Average seek time = 8.5 ms [~ @;I\:%\ \
* Average latency = 4 ms (7200 rpm) |"--. AN~ Hﬁ |-l,. l\r;\:{:;,' ._,al ,H
sTransfer rate = 300 Mbytes/s (SATA) > = "'{)XF--'.'_‘::'.'-?K
i Sy T
* Capacity = 2000 G byte Sector ok Zoned-hitr:cording
* Cost = $100 (5¢ Gbyte) rac
Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy 5

Quantity vs Quality...

Memory systems can be either:
® BIG and SLOW... or
e SMALL and FAST.

We've explored a range of
device-design trade-offs.

S)

S)

S
:._

SRAM (500%$/GB, 0.2 ns)

s there an
ARCHITECTURAL

101 ¢ DRAM (5$/GB, 5 ns)
solution to this DELIMA?

o
ssp HDD(0.05$/GB, 10 mS)
(1$/GB,300nS) ®

of DVD Burner (0.02$/GB, 120ms)
> Access
10€ 106 1073 1 100 Time

Comp 411 - Fall 2015 11/12/2015 L21 — Memory Hierarchy ©

Managing Memory via Programming

e |nreality, systems are built with a mixture of all these
various memory types

MAIN

SRAM MEM % §
cpPU |

e How do we make the most effective use of each memory?

* We could push all of these issues off to programmers
* Keep most frequently used variables and stack in SRAM
* Keep large data structures (arrays, lists, etc) in DRAM
* Keep bigger data structures on disk (databases) on DISK

* It is harder than you think... data usage evolves over a
program’s execution

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy 7

Best of Both Worlds

What we REALLY want: A BIG, FAST memory!
(Keep everything within instant access)

We'd like to have a memory system that
e PERFORMS like 2 GBytes of SRAM; but
® COSTS like 512 MBytes of slow memory.

SURPRISE: We can (nearly) get our wish!

KEY: Use a hierarchy of memory technologies:

MAIN

SRAM MEM % §
cpPU |

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy &

Key IDEA

* Keep the most often-used data in a small,
fast SRAM call a “Cache” (“on™ CPU chip)

o Refer to Main Memory only rarely, for

remaining data.

The reason this strategy works: LOCALITY

Comp 411 - Fall 2015

Locality of Reference:

Reference to location X at time t implies
that reference to location X+AX at
time t+At becomes more probable as

AX and At approach zero.
o

~

1/12/2015

L21 — Memory Hierarchy 9

Typical Memory Reference Patterns

MEMORY TRACE -
A temporal sequence
of memory references
(addresses) from a
real program.

es, o ot TEMPORAL LOCALITY -

..5: R ° . o o oo If an item is referenced,
o eee it will tend to be
referenced again soon

address

SPATIAL LOCALITY —
If an item is referenced,
program hearby items will tend
to be referenced soon.

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy 10

Working Set

address
e’e’e’e’
o 0o 0 o e’e’e’e’
SIACK | eee o s o o° ® ® ® °°°
o o o @
oo

° o eooo

iosee o o ooe
oo e oeo ° ° °

T ° ° ° e oo
data °00 T eeee o ‘oee
oo o
°
J’ fw
¥ o o°
o o o
X f’ ff
o o
J’ Jp J’ Jﬂp ° ":f
program f’ f’ f’ o o

1/12/2015

Comp 411 - Fall 2015

= At

S is the set of locations
accessed during At.

Working set: a set S

w.r.t. access time.

M which changes slowly

Working set size, IS]

L21 — Memory Hierarchy 11

Exploiting the Memory Hierarchy

Approach 1 (Cray, others): Expose Hierarchy

* Registers, Main Memory,

Disk each available as
storage alternatives;

* Tell programmers: “Use them cleverly”

Approach 2: Hide Hierarchy

SRAM

MAIN
MEM

CpPU

=

—_—

* Programming model: SINGLE kind of memory, single address

Space.

® Machine AUTOMATICALLY assigns locations to fast or slow

memory, depending on usage patterns.

Small
Static

Comp 411 - Fall 2015

Dynamic
RAM

“MAIN MEMORY”

1/12/2015

/

HARD
DISK

~

J

L21 — Memory Hierarchy 12

Why We Care

CPU performance is dominated by memory performance.

More significant than:
ISA, circuit optimization, pipelining, super-scalar, etc

4)
HARD
Dynamic DISK
RAM
“MAIN MEMORY” - /
“VIRTUAL MEMORY”
“SWAP SPACE”
TRICK #1: How to make slow MAIN MEMORY appear faster than it is.
Technique: CACHEING - This and next Lectures

TRICK #2: How to make a small MAIN MEMORY appear bigger than it is.
Technique: VIRTUAL MEMORY - Lecture after that

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy 13

The Cache Idea:

Program-Transparent Memory Hierarchy

1.0 (1.0-a1)
CPU o — DYNAMIC
100 | E | RAM

"CACHE" "MAIN
MEMORY"
Cache contains TEMPORARY COPIES of selected
main memory locations... eg. Mem[100] = 37 e N
GOALS:
° , Challenge:
1) Improve the average access time To make the
hit ratio as
o HIT RATIO: Fraction of refs found in CACHE. high as
(1-a) MISS RATIO: Remaining references. ossible.
\J y

tave - atc T (1 - a)(tc t tm) - tc T (1 - a)tm Why, on a miss, do | incur
2 the access penalty for

both main memory and

')
2) Transparency (compatibility, programming ease) } cache?

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy 14

How High of a Hit Ratio?

Suppose we can easily build an on-chip static memory
with a 800 pS access time, but the fastest dynamic
memories that we can buy for main memory have an
average access time of 10 nS. How high of a hit rate do
we heed to sustain an average access time of 1 n5¢

Solve foroo ¢, =t . +(1-a)t,
oo tae =1, _1 1-0.8
t, 10 ;

WOW, a cache really needs to be good? 4

= 98%

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy 15

The Cache Principle

Find “Hart, Lee”

/s

B-Minute Access Time:

— —
— —
0) 0)
~—\ —\
— —
) 0)
~\ ~\
— —
0) 0)

5-Second Access Time:

ALGORTHIM: Look on your desk for

Comp 411 - Fall 2015

the requested information first, if
its not there check secondary
storage

11/12/2015 L21 — Memory Hierarchy 16

Basic Cache Algorithm

ON REFERENCE TO Mem([X]: Look for X among cache tags...

CPU HIT: X == TAG(i , , “X” here is a
: X == (i) , for some cache line i memory
‘ READ: return DATA(i) addrece.
Tag Data ' WRITE: change DATA(i); f
line Start Write to Mem(X)
A | Mem[A] |
e'{”eMlss: X not found in TAG of any cache line
B | Mem[B] <€
REPLACEMENT SELECTION:
\ (1-0) Select some LINE k to hold Mem[X] (Allocation)
1-a

MAIN
MEMORY

Comp 411 - Fall 2015

READ: Read Mem([X]
Set TAG(k)=X, DATA(K)=Mem[X]

WRITE: Start Write to Mem(X)
Set TAG(k)=X, DATA(K)= new Mem[X]

112/2015 L21 — Memory Hierarchy 17

Cache

Sits between CPU and main memory
Very fast memory that stores TAGs and DATA
TAG is the memory address (or part of it)

DATA is a copy of memory at the
address given by TAG

Cache

Line 0 | 1000 17
Line 1 11040 1
Line 2 | 1032 97
Line 3 11008 11

Tag Data

Comp 411 - Fall 2015 1/12/2015

1000
1004
1008
1012

1016

1020
1024
1028
1032
1036
1040
1044

Memory
17
23
11

29
36

99
97
25

L21 — Memory Hierarchy 1&

Cache Access

On load we compare TAG entries to the ADDRESS we're loading
If Found = a HIT

Memory

return the DATA 1000 | 17

If Not Found = a MISS 1004 | 23
go to memory get the data 1008 | 11
decide where it goes in the cache, 1012 |5

put it and its address (TAG) in the cache 1016 | 20

Cache 1020 | 38

Line 0 | 1000 17 1oz 144

| 1028 | 99

Line 1 | 1040 1 1032 | 97

Line 2 | 1032 97 1036 | 25
Line 3 11008 11 1040 |1
Tag Data 1044 | 4

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy 19

How Many Words per Tag?

Caches usually get more data than requested (Why?)

Each LINE typically stores more than 1 word,
16-64 bytes (4-16 Words) per line is common

A bigger LINE SIZE means:
1) fewer misses because of spatial locality
2) fewer TAG bits per DATA bits
but bigger LINE means longer time on miss
Cache

Line 0 | 1000 |17 23
Line 1 {1040 |1 4
Line 2 1032 | 97 25
Line 3 11008 | 11 5
Tag Data

Comp 411 - Fall 2015 1/12/2015

1000
1004
1006
1012

1016

1020
1024
1028
1032
1036
1040
1044

Memory
17
23
11

29
36

99
97
25

L21 — Memory Hierarchy 20

How do we Search the Cache TAGs?

Find “Hart, Lee” Associativity:
The degree of
parallelism used in
the lookup of Tags

Nope, “Smit

ey))

HERE IT |5|§ | |
N - -

 — —
® ®

} .\ —\

— —
® ®

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy 21

Fully- Associative Cache

TAG Data
Incoming /]\ I~
Address __ / (_; A<
7\
The extreme in associatively: TAG Data
All TAGS are searched /I~
in parallel _z [d HIT

Data items from *any* -
address can be located in

*any™ cache line TAG| Data
7 N Data
. s Out

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy 22

Direct-Mapped Cache

(non-associative)

Find “Hart, Lee”

/ NO Parallelism:

Look in JUST ONE place,
determined by

parameters of incoming
@ request (address bits)
... cah use ordinary RAM as
table

Comp 411 - Fall 2015 A 112/2015 L21 — Memory Hierarchy 23

Direct-Map Example

With & byte lines, 3 low-order bits determine the byte within the line

With 4 cache lines, the next 2 bits determine which line to use

1024d = 10000000000, = line = 00, = 0y, Memory
1000d = 01111101000, = line = 01, = 1y, 1000 | 17
. 1004 | 23
1040d = 10000010000, > line = 10, = 2y,
10065 | 11
1012 |5
Cache 1016 | 29
Line 0 | 1024 44 99 1020 | 38
Line 1 | 1000 17 23 1024 | 44
Line2 [1040 |1 4 1026 | 99
. 1032 | 97
Line 3 [1016 29 38 one |28
Tag Data
1040 |1
1044 | 4

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy 24

Direct Mapping Miss
What happens when we now ask for address 10067

but earlier we put 1040 there...
1040,, = 10000010000, > line

10; = 249

Cache
Line 0 | 1024 44 99
Line 1 | 1000 17 23
Line 2 [1008& 11 5
Line 3 [1016 29 35
Tag Data

Comp 411 - Fall 2015 1/12/2015

1000
1004
1006
1012

1016

1020
1024
1028
1032
1036
1040
1044

Memory
17
23
11

29
36

99
97
25

L21 — Memory Hierarchy 25

Direct Mapped Cache

LOW-COST Leader:
Requires only a single comparator and
use ordinary (fast) static RAM for cache tags & data:

Kx (T + D)-bit static RAM

Incoming Address —~ ~
T K (Tag Data
N y, P
Y
DISADYANTAGE:
< COLLISIONS
K-bit Cache Index \
\.
T Upper-address bits
/ D-bit data word

/

QUESTION: Why not use HIGH-order
bits as the Cache Index?

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy 26

HIT Data Out

A Problem with Collisions

Find “Heel, Art” PROBLEM:
Find “Here, Al T.” Contention among H’s....

Find “Hart, Lee” Nope, I've got
/ Heel” - CAN'T cache both
unhder

“Hart” & “Heel”

... Suppose H’s tend
to come at once?

==> BETTER IDEA:
File by LAST letter!

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy 27

Cache Questions = Cash Questions

What lies between Fully Associate and Direct-Mapped?

When | put something new into the cache, what data gets
thrown out?

How many processor words should there be per tag?
When | write to cache, should | also write to memory?

What do | do when a write misses cache, should space in
cache be allocated for the written address.

What if | have INPUT/OUTPUT devices located at certain
memory addresses, do we cache them?

AnISwers: tay Tuned

Comp 411 - Fall 2015 112/2015 L21 — Memory Hierarchy 28

