
L19 – Pipelined CPU I   1 Comp 411 – Fall 2015 11/05/2015 

Pipelined CPUs 

Where are the
 registers? 

This week’s lab will be held in Chapman 125 



L19 – Pipelined CPU I   2 Comp 411 – Fall 2015 11/05/2015 

Review of CPU Performance 

MIPS = Millions of Instructions/Second 

Freq = Clock Frequency, MHz 

CPI = Clocks per Instruction 

MIPS  = 
Freq 
CPI 

To Increase MIPS: 

1. DECREASE CPI. 

- RISC simplicity reduces CPI to 1.0. 

- CPI below 1.0? State-of-the-art multiple instruction issue 

2. INCREASE Freq. 

- Freq limited by delay along longest combinational path; hence 

- PIPELINING is the key to improving performance. 



L19 – Pipelined CPU I   3 Comp 411 – Fall 2015 11/05/2015 

miniMIPS Timing 
New PC 

PC+4 Fetch 
Instruction 

Control Logic 

Read Regs 

ASEL mux BSEL mux 

ALU 

Data  
Memory 
Access 

WDSEL mux 

RF setup PC setup Mem setup 

PCSEL mux 

+OFFSET 

CLK↑ 

CLK↑ 

The diagram on the left
 illustrates the Data Flow
 through time of miniMIPS 

Wanted:  longest path 

Complications: 

•  some apparent paths 
 aren’t “possible” 

•  functional units have
 variable execution times
 (eg, ALU) 

•  time axis is not to scale
 (eg, tPD,MEM is very big!) 

Sign Extend 

WASEL mux 

ti
m

el
in

e 
fo

llo
wi

ng
 a

 c
lo

ck
 e

dg
e 



L19 – Pipelined CPU I   4 Comp 411 – Fall 2015 11/05/2015 

Where are the Bottlenecks? 
Pipelining goal: 

Break LONG combinational paths 
→ memories, ALU in separate stages 

WA 

PC 

+4 
Instruction 
Memory A 

D 

Register 
File 

RA1 RA2 
RD1 RD2 

ALU A B 

WA 

ALUFN 

Control Logic 

Data Memory 
RD 
WD R/W 

Adr 
Wr 

WDSEL 0    1    2 

BSEL 
WDSEL 
ALUFN 
Wr 

J:<25:0> 

PCSEL 

WERF 

WERF 

00 

PC+4 

Rt: <20:16> 

Imm: <15:0> 

ASEL 

SEXT 
+ 

x4 

BT 

Z 

BT 

WASEL 
Rd:<15:11> 
Rt:<20:16> 0 

1 
2 
3 

WASEL 

PC<31:29>:J<25:0>:00 

JT  

JT  

N V C 

Z V N C 

Rs: <25:21> 

ASEL 2 0 

SEXT 

BSEL 0 1 

SEXT 
shamt:<10:6> 

PCSEL 0 1 2 3 4 5 6 

“16” 
IRQ 

0x80000080 
0x80000040 
0x80000000 

RESET 
“3
1” “2
7” 

1 

WD 
WE 



L19 – Pipelined CPU I   5 Comp 411 – Fall 2015 11/05/2015 

Ultimate Goal: 5-Stage Pipeline 

GOAL:  Maintain (nearly) 1.0 CPI, but increase clock speed to
 barely include slowest components (mems, regfile, ALU) 

APPROACH: structure processor as 5-stage pipeline: 

IF Instruction Fetch stage: Maintains PC, fetches
 one instruction per cycle and passes it to 

WB Write-Back stage: writes result back into
 register file. 

ID/RF 
Instruction Decode/Register File stage: Decode

 control lines and select source operands 

ALU 
ALU stage: Performs specified operation,

 passes result to 

MEM 
Memory stage: If it’s a lw, use ALU result as an

 address, pass mem data (or ALU result if
 not lw) to 



L19 – Pipelined CPU I   6 Comp 411 – Fall 2015 11/05/2015 

Current miniMIPS Timing 
Different instructions use various parts of the data path. 

add $4, $5, $6 
beq $1, $2, 40 
lw $3, 30($0) 
jal  20000  

Program
 execution
 order 

Time 

CLK 

Instruction Fetch 
Instruction Decode 
Register Prop Delay 
ALU Operation 
Branch Target 
Data Access 
Register Setup 

sw $2, 20($4)  

This is an example of a “Asynchronous
 Globally-Timed” control strategy (see
 Lecture 18). Such a system would vary the
 clock period based on the instruction
 being executed. This leads to complicated
 timing generation, and, in the end, slower
 systems, since it is not very compatible
 with pipelining! 

1 instr every 14 nS, 14 nS, 20 nS, 9 nS, 19 nS 

6 nS 
2 nS 
2 nS 
5 nS 
4 nS 
6 nS 
1 nS 



L19 – Pipelined CPU I   7 Comp 411 – Fall 2015 11/05/2015 

Uniform miniMIPS Timing 
With a fixed clock period, we have to allow for the worse case.  

add $4, $5, $6 
beq $1, $2, 40 
lw $3, 30($0) 
jal  20000  

Program
 execution
 order 

Time 

CLK 

Instruction Fetch 
Instruction Decode 
Register Prop Delay 
ALU Operation 
Branch Target 
Data Access 
Register Setup 

sw $2, 20($4)  

By accounting for the “worse case” path
 (i.e. allowing time for each possible
 combination of operations) we can
 implement a “Synchronous Globally
-Timed” control strategy. This simplifies
 timing generation, enforces a uniform
 processing order, and allows for
 pipelining! 

Isn’t the
 net effect
 just a
 slower
 CPU? 

1 instr EVERY 20 nS 

6 nS 
2 nS 
2 nS 
5 nS 
4 nS 
6 nS 
1 nS 



L19 – Pipelined CPU I   8 Comp 411 – Fall 2015 11/05/2015 

Step 1: A 2-Stage Pipeline 
IF 

EXE 

WA 

PC 

+4 
Instruction 
Memory A 

D 

Register 
File 

RA1 RA2 
RD1 RD2 

ALU A B 

WA WD 
WE 

ALUFN 

Control Logic 

Data Memory 
RD 
WD R/W 

Adr 
Wr 

WDSEL 0    1    2 

BSEL 
WDSEL 
ALUFN 
Wr 

J:<25:0> 

PCSEL 

WERF 

WERF 

00 

PC+4 

Imm: <15:0> 

ASEL 

SEXT 
+ 

x4 

BT 

Z 

BT 

WASEL 
Rd:<15:11> 
Rt:<20:16> 0 

1 
2 
3 

WASEL 

PC<31:29>:J<25:0>:00 

JT  

JT  

N V C 

Z V N C 

Rt: <20:16> Rs: <25:21> 

ASEL 2 0 

SEXT 

BSEL 0 1 

SEXT 
shamt:<10:6> 

PCSEL 0 1 2 3 4 5 6 

“16” 
IRQ 

0x80000080 
0x80000040 
0x80000000 

RESET 
“3
1” “2
7” 

1 

PCEXE
 

00 IREXE
 

IR stands for
 “Instruction Register”.
 The superscript “EXE”
 denotes the pipeline
 stage, in which the PC
 and IR are used. 



L19 – Pipelined CPU I   9 Comp 411 – Fall 2015 11/05/2015 

2-Stage Pipe Timing 
Improves performance by increasing instruction throughput. 

Ideal speedup is number of pipeline stages in the pipeline.  

add $4, $5, $6 
beq $1, $2, 40 
lw $3, 30($0) 
jal  20000  

Program
 execution
 order 

Time 

CLK 

Instruction Fetch 
Instruction Decode 
Register Prop Delay 
ALU Operation 
Branch Target 
Data Access 
Register Setup 

sw $2, 20($4)  

By partitioning each instruction cycle into
 a “fetch” stage and an “execute” stage,
 we get a simple pipeline. Why not include
 the Instruction-Decode/Register-Access
 time with the Instruction Fetch? You
 could. But this partitioning allows for a
 useful variant with 2-cycle loads and
 stores. 

Latency? 

Throughput? 

2 Clock
 periods =
 2*14 nS 

1 instr 
per 
14 nS 

During this, and all subsequent
 clocks two instructions are in
 various stages of execution 

6 nS 
2 nS 
2 nS 
5 nS 
4 nS 
6 nS 
1 nS 



L19 – Pipelined CPU I   10 Comp 411 – Fall 2015 11/05/2015 

2-Stage w/2-Cycle Loads & Stores 
Further improves performance, with slight increase in control complexity.

 Some 1st generation (pre-cache) RISC processors used this approach.  

add $4, $5, $6 
beq $1, $2, 40 
lw $3, 30($0) 
jal  20000  

Program
 execution
 order 

Time 

CLK 

Instruction Fetch 
Instruction Decode 
Register Prop Delay 
ALU Operation 
Branch Target 
Data Access 
Register Setup 

sw $2, 20($4)  

The clock rate is now more than twice
 our original design (1/20nS). Does
 that mean it is twice as fast? 

Clock: 
   8 nS! 

€ 

speed up = old clock period
new clock period (1*0.7+2*0.3)

= 20
8(1.3) =1.923

6 nS 
2 nS 
2 nS 
5 nS 
4 nS 
6 nS 
1 nS 

Not likely. In SPEC benchmarks, as many
 as 30% of instructions access memory.
 Thus, the effective speed up is: 

The inclusion of an 
extra instruction 
specific clock cycle 
within a normal 
pipeline is called 
“inserting a bubble”. 

Extra cycle
 for lw 

Extra cycle
 for sw 



L19 – Pipelined CPU I   11 Comp 411 – Fall 2015 11/05/2015 

2-Stage Pipelined Operation 

 ... 
 addi  $t2,$t1,1 
 xor   $t2,$t1,$t2 
 sltiu   $t3,$t2,1 
 srl     $t2,$t2,1 
 ... 

Consider a sequence 
of instructions: 

Executed on our 2-stage pipeline: 

IF 

EXE 

i i+1 i+2 i+3 i+4 i+5 i+6 

... xor addi srl sltiu 

... xor addi srl sltiu 

TIME (cycles) 

Pi
pe

lin
e 

Recall  
“Pipeline
 Diagrams” from
 Lecture 18. 

Can it be
 this easy!? 



L19 – Pipelined CPU I   12 Comp 411 – Fall 2015 11/05/2015 

Pipeline Control Hazards 

BUT consider instead: 

IF 

EXE 

i i+1 i+2 i+3 i+4 i+5 i+6 

... srl add andi bne 

... srl add ? bne 

loop:  add  $t1,$t1,$t0 
 srl  $t2,$t2,1  
 bne  $t2,$0,loop 
 andi $t0,$t2,1  
 ... 

This is the cycle where the branch decision 
is made… but we’ve already fetched the
 following instruction which should be executed
 only if branch is not taken! 

Pipelining HAZARDS are situations where the next instruction cannot
 execute in the next clock cycle. There are two forms of hazards, CONTROL
 and STRUCTURAL. 



L19 – Pipelined CPU I   13 Comp 411 – Fall 2015 11/05/2015 

Branch Delay Slots 
PROBLEM: One (or more) instructions following a branch are 
fetched before the branch decision is made (to take, or not to take). 

POSSIBLE SOLUTIONS: 
1.  Make hardware “annul” the instructions following

 taken branches, e.g., by disabling WERF and WR. 

2. “Program around it”.  Either 
a)  Follow each BNE/BEQ with a NOP instruction; or 
b)  Make compiler clever enough to move USEFUL instructions

 into the branch delay slots 
i.  Always execute instructions in delay slots 
ii.  Conditionally execute instructions in delay slots  

•  Delay slots also apply to jump instructions: j, jal, and jr 



L19 – Pipelined CPU I   14 Comp 411 – Fall 2015 11/05/2015 

Branch Solution 1 

Make the hardware annul
 instructions in the
 branch delay slots of a
 taken branch. 

IF 

EXE 

i i+1 i+2 i+3 i+4 i+5 i+6 

srl add andi bne 

srl add bne 

srl add bne 

srl add andi 

Pros: Programs run identically on both unpipelined and pipelined hardware 
Cons: in SPEC benchmarks 14% of instructions are taken branches → 
                                                        14/114 = 12% of total cycles are annulled 

loop:  add  $t1,$t1,$t0 
 srl  $t2,$t2,1  
 bne  $t2,$0,loop 
 andi $t0,$t2,1  
 ... 

Branch taken 
nop 



L19 – Pipelined CPU I   15 Comp 411 – Fall 2015 11/05/2015 

Branch Annulment Hardware 

WA 

PC 

+4 

Instruction 
Memory 

A D 

Register 
File 

RA1 RA2 
RD1 RD2 

ALU A B 

WA WD 
WE 

ALUFN 

Control Logic 

Data Memory 
RD 
WD R/W 

Adr 
Wr 

WDSEL 0    1    2 

BSEL 
WDSEL 
ALUFN 
Wr 

J:<25:0> 

PCSEL 

WERF 

WERF 

00 

PC+4 

Imm: <15:0> 

ASEL 

SEXT 
+ 

x4 

BT 

Z 

BT 

WASEL 
Rd:<15:11> 
Rt:<20:16> 0 

1 
2 
3 

WASEL 

PC<31:29>:J<25:0>:00 

JT  

JT  

N V C 

Z V N C 

Rt: <20:16> Rs: <25:21> 

ASEL 2 0 

SEXT 

BSEL 0 1 

SEXT 
shamt:<10:6> 

PCSEL 0 1 2 3 4 5 6 

“16” 
IRQ 

0x80000080 
0x80000040 
0x80000000 

RESET 
“3
1” “2
7” 

1 

PCEXE
 

00 IREXE
 

BTAKEN
 

0 1 NOP = 0x00000000 

Recall that a NOP in MIPS is: 
   sll %0,%0,0 = 0x00000000 

BTAKEN 



L19 – Pipelined CPU I   16 Comp 411 – Fall 2015 11/05/2015 

Branch Alternative 2a 

Always fill branch delay slots
 with NOP instructions.  
Worse than H/W annulment. 
NOPs get executed whether 
 branches are taken or not. 

IF 

EXE 

i i+1 i+2 i+3 i+4 i+5 i+6 

srl add nop bne 

cmp add bne 

srl add bne 

cmp add nop 

Branch taken 

Pros: Does not require H/W modifications, only compiler changes 
Cons:  NOPs make code longer; >12% of cycles spent executing NOPs 

loop:  add  $t1,$t1,$t0 
 srl  $t2,$t2,1  
 bne  $t2,$0,loop 
 nop 
 andi $t0,$t2,1  
 ... 

Maybe I could
 find something
 useful to do in
 that instruction
 slot 



L19 – Pipelined CPU I   17 Comp 411 – Fall 2015 11/05/2015 

Branch Alternative 2b(i) 
Put USEFUL instructions 
 in the branch delay slots;
 remember they will be
 executed whether the
 branch is taken or not 

IF 

EXE 

i i+1 i+2 i+3 i+4 i+5 i+6 

add srl srl bne 

add srl bne 

bne add srl 

bne add srl 

Branch taken 

Pros: only one “extra” instruction is executed (on last iteration) 
Cons:  finding “useful” instructions that should always be executed  
           is difficult; clever rewrite may be required.   Program executes 
           differently on unpipelined implementation. 

        srl  $t2,$t2,1  
loop:   add  $t1,$t1,$t0 
        bne  $t2,$0,loop 
        srl  $t2,$t2,1 
        ... 

This is the standard approach for pipelined MIPS implementations 

 Effectively  
 a NOP if the
 branch is not 
 taken.  
(if ($t2 == 0) then 
 $t2 >> 1 == 0)  

However, finding 
an instruction 
that behaves 
like a NOP when 
not taken can 
be tricky, 

This breaks the
 “SEQUENTIAL
 SEMANTICS” of the
 ISA. Logically, the
 branch takes place
 after the instruction
 in the DELAY SLOT is
 executed. 



L19 – Pipelined CPU I   18 Comp 411 – Fall 2015 11/05/2015 

Branch Alternative 2b(ii) 

Put USEFUL instructions 
 in the branch delay slots;
 annul them if branch
 doesn’t behave as
 predicted 

IF 

EXE 

i i+1 i+2 i+3 i+4 i+5 i+6 

srl add add bne.t 

srl add bne.t 

bne.t srl add 

bne.t srl add 

Branch taken 

Pros: only one instruction is annulled (on last iteration); about 70% 
         of branch delay slots can be filled with useful instructions 
Cons:  Program executes differently on naïve unpipelined implementation; 
           difficult to utilize with more than one delay slot. 

 add    $t1,$t1,$t0 
loop:  srl    $t2,$t2,1  

 bne.t  $t2,$0,loop 
 add    $t1,$t1,$t0 
 andi   $t0,$t2,1 
 ... 

i+7 

add 

andi 

nop 
Branch not taken 

The “.t” suffix,
 implies a new
 instruction
 variant “Branch
 if not equal,
 while executing
 the delay slot  
 if taken.”  
 Likewise, we
 could add a “.n”
 variant for the
 “execute if not
 taken” case.  
 H/W annuls 
 the “opposite”
 case. 



L19 – Pipelined CPU I   19 Comp 411 – Fall 2015 11/05/2015 

Architectural Issue: 
Branch Decision Timing 

How is the number of branch delay slots
 determined? Depends on “where” in the
 pipeline the “branch decision” is made
 relative to where instructions are
 fetched.  

Consider the 5-stage miniMIPS pipeline
 shown on the right. 

What stage is the branch decision made? 

beq rs,rt,offset 
    if (Reg[rs] == Reg[rt]) 
        PC ← PC + 4 + 4*SEXT(offset) 

The decision is based on the ALU’s  
Z-flag, which is determined at the very
 end of the ALU stage, 2 stages after
 the instruction fetch. Therefore, a
 naïve 5-stage pipelined miniMIPS
 implementation has at least TWO
 branch delay slots.  

IF 

instruction 

Instruction 
Fetch 

ALU 
CL 

A B instruction 

Instruction Decode 
and Register File CL 

RF (read) 

instruction 

instruction Y Write 
Back 

CL 

RF (write) 

instruction Y Memory 

CL 

Is there any way miniMIPS’ could make its
 branch decision sooner? We only need to
 support BNE and BEQ, since we choose to
 trap and emulate the more complicated
 branch instructions. 

Z 
ALU 

1 stage 

2 stages 



L19 – Pipelined CPU I   20 Comp 411 – Fall 2015 11/05/2015 

Early Branch Decision Hardware 

WA 

PC 

+4 

Instruction 
Memory 

A D 

Register 
File 

RA1 RA2 
RD1 RD2 

ALU A B 

WA WD 
WE 

ALUFN 

Control Logic 

Data Memory 
RD 
WD R/W 

Adr 
Wr 

WDSEL 0    1    2 

BSEL 
WDSEL 
ALUFN 
Wr 

J:<25:0> 

PCSEL 

WERF 

WERF 

00 

PC+4 

Imm: <15:0> 

ASEL 

SEXT 
+ 

x4 

BT 

Z 

BT 

WASEL 
Rd:<15:11> 
Rt:<20:16> 0 

1 
2 
3 

WASEL 

PC<31:29>:J<25:0>:00 

JT  

JT  

N V C 

Z V N C 

Rt: <20:16> Rs: <25:21> 

ASEL 2 0 BSEL 0 1 

SEXT SEXT 
shamt:<10:6> 

PCSEL 0 1 2 3 4 5 6 

“16” 
IRQ 

0x80000080 
0x80000040 
0x80000000 

RESET 
“3
1” “2
7” 

1 

PCEXE
 

00 IREXE
 

ANNULIF
 

0 1 NOP 

Luckily, the Instruction Decode and
 Register Access stage is one of our
 faster paths. The logic for testing
 for the equality of two inputs is
 called a comparator.  

= 
BZ 

BZ 

. 

. 

. 

Bn-1 
An-1 

Bn-2 
An-2 

B0 
A0 

B1 
A1 

B2 
A2 

B3 
A3 

A ==B 



L19 – Pipelined CPU I   21 Comp 411 – Fall 2015 11/05/2015 

ALU A B 
ALUFN 

Data Memory 
RD 
WD R/W Adr Wr 

WDSEL 0    1    2 

PC+4 

Z V N C 

PC 
+4 

Instruction 
Memory 

A 
D 

00 

BT 

PC<31:29>:J<25:0>:00 

JT  

PCSEL 0 1 2 3 4 5 6 
0x80000080 
0x80000040 
0x80000000 

PCREG
 

00 IRREG
 

WA Register 
File 

RA1 RA2 
RD1 RD2 

J:<25:0> 

Imm: <15:0> 

+ 
x4 

BT 

JT  

Rt: <20:16> Rs: <25:21> 

ASEL 2 0 BSEL 0 1 

SEXT SEXT 
shamt:<10:6> 

“16” 
1 

= 
BZ 

Step 2: 4-Stage miniMIPS 

PCALU
 

00 IRALU
 

A
 

B
 

WDALU
 

PCMEM
 

00 IRMEM
 

Y
 

WDMEM
 

WA Register 
File 

WA WD 
WE WERF 

WASEL 
Rd:<15:11> 
Rt:<20:16> 

“3
1” 

“2
7” 

0    1    2    3 
(NB: SAME RF 

   AS ABOVE!) 

Treats register file
 as two separate
 devices:
 combinational
 READ, and a
 synchronous WRITE
 at end of clock
 cycle. 

What other
 information do we
 have to pass down
 pipeline? 
   PC 

   instruction fields 

What sort of
 improvement
 should expect in
 cycle time? 

(return addresses) 

(decoding) 

Instruction 
Fetch 

Register 
File 

ALU 

Write 
Back 



L19 – Pipelined CPU I   22 Comp 411 – Fall 2015 11/05/2015 

4-Stage miniMIPS Operation 

 ... 
 addi $t0,$t0,1 
 sll  $t1,$t1,2 
 andi $t2,$t2,15 
 sub  $t3,$0,$t3 
 ... 

Consider a sequence 
of instructions: 

Executed on our 4-stage pipeline: 

IF 

RF 

ALU 

WB 

i i+1 i+2 i+3 i+4 i+5 i+6 

...   sll addi sub andi 

...   sll addi sub andi 

...   sll addi sub andi 

   sll addi sub andi 

TIME (cycles) 

Pi
pe

lin
e 



L19 – Pipelined CPU I   23 Comp 411 – Fall 2015 11/05/2015 

Pipeline “Structural Hazard” 

BUT consider instead:  ... 
 addi $t0,$t0,1 
 sll  $t1,$t0,2 
 andi $t2,$t2,15 
 sub  $t3,$0,$t3 
 ... 

IF 

RF 

ALU 

WB 

i i+1 i+2 i+3 i+4 i+5 i+6 

addi sll andi 

addi 

addi 

addi 

sll 

sll 

sll 

sub 

andi 

andi 

andi 

sub 

sub 

sub 

Oops!  sll is trying to read Reg[8] ($t0)
 during cycle I+2 but addi doesn’t write its
 result into Reg[8] until the end of cycle I+3! 

Stuff like this
 never happened
 when we did
 pipelining last
 time. Why now? 

How do we fix
 this one? 

Before, we
 forbade
 feedback. Can’t
 do that with a
 useful CPU. 

One of our source
 operands is the

 destination of
 the previous
 instruction 



L19 – Pipelined CPU I   24 Comp 411 – Fall 2015 11/05/2015 

Data Hazard Solution 1 
“Program around it” 
  ... document weirdo semantics, declare it a software problem. 

- Breaks sequential semantics!  
(Order of instruction execution is not obvious) 
- Costs code efficiency. 

addi $t0,$t0,1 
sll  $t1,$t0,2 
andi $t2,$t2,15 
sub  $t3,$0,$t3 

addi $t0,$t0,1 
andi $t2,$t2,15 
sub  $t3,$0,$t3 
sll  $t1,$t0,2 

EXAMPLE: Rewrite 

as 

How often can we do this? 
Not Very. 

IF 

RF 

ALU 

WB 

i i+1 i+2 i+3 i+4 i+5 i+6 
addi andi sub 

addi 
addi 

addi 

andi 
andi 

andi 

sll 
sub 

sub 
sub 

sll 
sll 

sll 



L19 – Pipelined CPU I   25 Comp 411 – Fall 2015 11/05/2015 

Data Hazard Solution 2 

Stall the pipeline  
    (add bubbles/disable update to IRXs and PCXs): 

Freeze IF, RF stages for 2 cycles, inserting NOPs
 into ALU-stage instruction register 

IF 

RF 

ALU 
WB 

i i+1 i+2 i+3 i+4 i+5 i+6 
addi sll andi sub 

addi sll andi sub 

addi 

addi 

sll 

sll 

andi NOP NOP 

NOP NOP 

andi 

sll 

andi 

sll 

Drawback:  Added NOPs “waste” cycles. Lot’s of wasted cycles. 
(A large percentage of instructions depend on results from the  
immediately preceding instruction) 



L19 – Pipelined CPU I   26 Comp 411 – Fall 2015 11/05/2015 

Data Hazard Solution 3 

Bypass (aka forwarding) Paths: 
Add extra data paths & control logic to re-route
 data in problem cases. 

IDEA: The ALU result from the addi, which WILL BE WRITTEN into the
 register file at the end of cycle I+3, is actually available at output of the
 ALU near the end of cycle I+2 – just in time for it to be input into the ALU
 of the sll in the RF stage! Thus, using it before it is actually written into
 the register! 

IF 

RF 

ALU 

WB 

i i+1 i+2 i+3 i+4 i+5 i+6 

addi sll andi sub 

addi sll andi sub 

addi sll andi sub 

addi sll andi sub 



L19 – Pipelined CPU I   27 Comp 411 – Fall 2015 11/05/2015 

Bypass Paths (I) 

Register 
File 

WA WD 
WE 

ALU A B 
Y 

IR WB 

IR ALU 

Register 
File 

RA1 RA2 
RD1 RD2 

IR RF 

Y WB 

B A 
Bypass 
 muxes 

 SELECT this  BYPASS path if 

OpRF = reads Rs and  
(( OpALU = R-type and RsRF = RdALU) 
                         or  
  ( OpALU = I-type and RsRF = RtALU)) 

i.e., instructions that update
 registers with ALU results 

and RsRF != 0 

addi $8,$8,1  

sll $9,$8,2 



L19 – Pipelined CPU I   28 Comp 411 – Fall 2015 11/05/2015 

Bypass Paths (II) 

Register 
File 

WA WD 
WE 

ALU A B 
Y 

IR WB 

IR ALU 

Register 
File 

RA1 RA2 
RD1 RD2 

IR RF 

Y WB 

B A 
Bypass 
 muxes 

addi $5,$4,$7 

sub $3,$1,$2 

xor $1,$2,$6 

SELECT this BYPASS path if 

OpRF uses RsRF as a source 

and RsRF != 0 
and not using ALU bypass 
and WERF = 1 
and RsRF = WA 

Why not get it from the
 register file? It’s being
 written this cycle! 



L19 – Pipelined CPU I   29 Comp 411 – Fall 2015 11/05/2015 

Next Time 

Many More  
Bypasses Ahead 


