Computer Performance

He said, to speed
things up we need
to squeeze the clock

9 Y

Comp 411 - Fall 2015 10/29/15 L17 - Computer Performance 1

Why Study Performance?

Helps us to make intelligent design choices
Helps us see through marketing hype

Affects computer organization
(pipelining, caches, etc.)

e Why is some hardware faster than others for
different programs?

* What factors of system performance are hardware
related? (e.g., Do we need a nhew machine, more
memory, a better compiler, or a new 057)

e How does a machine’s instruction set affect its
performance?

Comp 411 - Fall 2015 10/29/15 L17 - Computer Performance 2

Which Airplane has the Best Performance?

Airplane Passengers Range (mi) Speed (mph)
Boeing 757-100 152 020 596
Boeing 747 470 4150 o10
BAC/Sud Concorde 101 4000 1550
Douglas DC-6-50 146 &720 B4 4

How much faster is the Concorde than the 7472 2.213 X
How much larger is the 747's capacity than the Concorde? 4.65 X

It is roughly 4000 miles from Raleigh to Paris. What is the throughput

of the 747 in passengers/hr? The Concorde?

470 x 610 =71.65 passengers/hr 101 x 1350

4000 4000

What is the latency of the 7472 The Concorde? 4000/610 = 6.56 hours/pass
4000/1350 = 2.96 hours/pass

Comp 411 - Fall 2015 10/29/15 L17 - Computer Performance 3

= 34.0875 %“’

Performance Metrics

Latency: Time from an input to its corresponding output
— How long does it take for my program to run?
— How long must | wait after typing return for
the result?

Throughput: The rate at which new outputs are generated
— How many calculations per second?
— What is the average execution rate of my program?
— How much work is getting done?

By running a program on 20 different input files on the fastest
processor, what performance metric do we improve? Latency

By running our program simultaneously on 20 CPU’s for all of the

assigned input files, what performance metric do we improve?
Throughput

Comp 411 - Fall 2015 10/29/15 L17 - Computer Performance 4

Design Tradeoffs

|
®

Comp 411 - Fall 2015

Maximum Performance: measured by

the numbers of instructions executed
per second

Minimum Cost: determined by the

size-of-the-circuit/ number-of-components—used
plus power/cooling costs

Best Price/Performance: measured by
the ratio of CPU-cost to MIPS.

For many applications Performance/Watt
has become important too.

10/29/15 L17 — Computer Performance 5

Execution Time

Elapsed Time/Wall Clock Time

counts everything (disk and memory accesses, 1/0, etc.)
a useful number, but often not good for comparison purposes

4'&
Our focus: user CPU time

Time spent executing actual instructions of “our” program

CPU time

Doesn’t include 1/0 or time spent running other programs

can be broken up into system time, and user time

Comp 411 - Fall 2015 10/29/15 L17 — Computer Performance 6

Definition of Performance

For some program running on machine X,
Performance, = Program Executions / Time, (executions/sec)

"X is n times faster than Y" ‘

Performance, / Performance, = n

Problem:
Machine A runs a program in 20 seconds

Machine B runs the same program in 25 seconds

Performance, = 1/20 Performanceg = 1/25

Machine A is (1/20)/(1/25) = 1.25 times faster than Machine B

Comp 411 - Fall 2015 10/29/15 L17 — Computer Performance 7

Program Clock Cycles

Instead of reporting execution time in seconds, we can also use cycle counts

seconds clock cycles y seconds

program program cycle

Clock “ticks” are when machine-state changes (synchronous abstraction):

I I I I I I I I >
I I I I I I I I -

time

cycle time = time between rising edges of the clock = seconds per cycle

clock rate (frequency) = cycles per second (1 Hz. =1 cycle/sec)

1
A 200 Mhz. clock has a =5.0x10° =5nS cycle time

200 x 10°

OVERCLOCKing improves performance (seconds/program) by decreasing the
cycle time (seconds/cycle), while hoping that the functional blocks
continue to operate as specified.

Comp 411 - Fall 2015 10/29/15 L17 - Computer Performance &

Computer Performance Measure

Millions of Instructions per Second Frequency in Hz .1 of these
/ / e
dependent?
e
MIPS 1 clocks/second

Megahertz (MHz)

/gb(106 AVE(clocks instruction) <
the frequency is given in T

CPI (Average Clocks Per Instruction)

Historically:
70’s -60’s PDP-11, YAX, Intel 5086 CPl > 1
90’s Load/Store RISC machines

MIPS, SPARC, PowerPC, miniMIPS: CPI =1
Your Century Modern CPUs, Pentium, Athlon, i7 CPl <1

Comp 411 - Fall 2015 10/29/15 L17 — Computer Performance 9

How to Improve Performance?

seconds

1| Freg
109 CPI

seconds | clock cycles

MIPS =

program program L cycle

So, to improve performance (everything else being equal) you can either

Decrease (improve ISA/Compiler)

the # of required cycles for a program, or

Decrease phe clock cycle time or, said another way,

Increase ipe clock rate. (reduce propagation delays or use pipelining)

Decrease yhe Pl (average clocks per instruction) (new H/W)

Comp 411 - Fall 2015 10/29/15 L17 - Computer Performance 10

How Many Cycles in a Program?

Could assume that # of cycles = # of instructions (True of
the miniMIPS implementation developed last lecture).

1st instruction
2nd instruction
3rd instruction

4th
5th
6th

time

v

This assumption can be incorrect,
Different instructions take different amounts of time on different machines.
Memory accesses might require more cycles than other instructions.
Floating-Point instructions might require multiple clock cycles to execute.
Branches might stall execution rate

Comp 411 - Fall 2015 10/29/15 L17 — Computer Performance 11

Example

Our favorite program runs in 10 seconds on computer A, which has a
400 Mhz clock. We are trying to help a computer designer build a new
machine B, to run this program in 6 seconds. The designer can use
hew (or perhaps more expensive) technology to substantially increase
the clock rate, but has informed us that this increase will affect the
rest of the CPU design, causing machine B to require 1.2 times as many
clock cycles as machine A for the same program. What clock rate
should we tell the designer to target?

=10x400x10° =4 x 10’

cycles _(seconds) y cycles
A

program \ program second

cycles cycles/program — 1.2x4x 10’

= =800 x 10°
second (seconds/ program), 6

Don’t panic, can easily work this out from basic principles

Comp 411 - Fall 2015 10/29/15 L17 — Computer Performance 12

Now that We Understand Cycles

A given program will require
* some humber of instructions (machine instructions)

* some number of cycles

* some humber of seconds

We have a vocabulary that relates these quantities:
cycle time (seconds per cycle)
clock rate (cycles per second)

CPI (average clocks per instruction)

a floating point intensive application might have a higher CPI

MIPS (millions of instructions per second)

this would be higher for a program using simple instructions

Comp 411 - Fall 2015 10/29/15 L17 — Computer Performance 13

Performance Traps

Actual performance is determined by the execution time of a
program that you care about, not a benchmark nor a clock rate.

Variables that impact performance:
of cycles to execute program?
of instructions in program?
of cycles per second?
average # of cycles per instruction?

average # of instructions per second?
Common pitfall:

Thinking only one of these variables is indicative of
performance when it really isn’t.

Comp 411 - Fall 2015 10/29/15 L17 — Computer Performance 14

CPI Example

5uppose we have two implementations of the same

instruction set architecture (ISA).

Like a
For some program, / 1GHz i7

Machine A has a clock cycle time of 1 ns and a CPI of 0.5
Machine B has a clock cycle time of 0.4 ns and a CPl of 1.5

Pentium

What machine is faster for this program, and by how much? ‘{?\ Like 2 2.5 GHz

-9 -9
1 freq _ I 1/(Ix107) 9000 MIPS,, - 16 freq _ 16 1/(04x107)
10°CcPI 10° 05 10° CPI 10 1.5

Relative Performance = MIPS, _ 2000 =1.2

MIPS, 1666.6

If two machines have the same ISA and run the same program, which
quantity (e.g., clock rate, CPI, execution time, # of instructions, MIPS)
will always be identical?

MIPS,, = = 1666.66

Comp 411 - Fall 2015 10/29/15 L17 — Computer Performance 15

Compiler's Performance Impact

Two different compilers are being tested for a 500 MHz machine with

three different classes of instructions: Class A, Class B, and Class C,
which require one, two, and three cycles (respectively). Both compilers are
used to produce code for the same a large program. The first compiler's
code executes 5 million Class A instructions, 1 million Class B instructions,

and 2 million Class C instructions. The second compiler‘s code executes 7
million Class A instructions, 1 million Class B instructions, and 1 million
Class C instructions.

Which program uses the fewest instructions?

Instructions, = (5+1+2) x 10° = & x 10°
Instructions, = (7+1+1) x 10° = 9 x 10°

Which sequence uses the fewest clock cycles?
Cycles, = (5(1)+1(2)+2(3)) x 10° =13 x 10°
Cycles, = (7(1)+1(2)+1(3)) x 10° = 12 x 10°

Comp 411 - Fall 2015 10/29/15 L17 — Computer Performance 16

Benchmarks

Performance is best determined by running a real application
Use programs typical of expected workload

Or, typical of expected class of applications
e.g., compilers/editors, scientific applications, graphics, etc.

Small benchmarks
hice for architects and designers
easy to standardize

but can be easily abused
SPEC (System Performance Evaluation Cooperative)
companies have agreed on a set of real programs and inputs

can still be abused

valuable indicator of performance (and compiler technology)

Comp 411 - Fall 2015 10/29/15 L17 - Computer Performance 17

SPEC CPU 2006

CINT2006 (Integer Component of SPEC CPU2006):

Benchmark Language Application Area Brief Description
400.perlbench C Programming Derived from Perl V5.8.7. The workload includes SpamAssassin,
Language MHonArc (an email indexer), and specdiff (SPEC's tool that checks

benchmark outputs).

401.bzip2 C Compression Julian Seward's bzip2 version 1.0.3, modified to do most work in
memory, rather than doing I/0.

403.gcc C C Compiler Based on gcc Version 3.2, generates code for Opteron.

429.mcf C Combinatorial Vehicle scheduling. Uses a network simplex algorithm (which is also
Optimization used in commercial products) to schedule public transport.

445.gobmk C Artificial Intelligence: Plays the game of Go, a simply described but deeply complex game.
Go

456.hmmer C Search Gene Protein sequence analysis using profile hidden Markov models
Sequence (profile HMMs)

458.sjeng C Artificial Intelligence: A highly-ranked chess program that also plays several chess
chess variants.

462.libquantum C Physics / Quantum Simulates a quantum computer, running Shor's polynomial-time
Computing factorization algorithm.

464 .h264ref C Video Compression A reference implementation of H.264/AVC, encodes a videostream

using 2 parameter sets. The H.264/AVC standard is expected to
replace MPEG2

471.omnetpp C++ Discrete Event Uses the OMNet++ discrete event simulator to model a large
Simulation Ethernet campus network.
473.astar C++ Path-finding Algorithms Pathfinding library for 2D maps, including the well known A*
algorithm.
483.xalancbmk C++ XML Processing A modified version of Xalan-C++, which transforms XML documents

to other document types.

Comp 411 - Fall 2015 10/29/15 L17 — Computer Performance 1&

Benchmark
410.bwaves

416.gamess

433.milc

434.zeusmp

435.gromacs

436.cactusADM

437 leslie3d

444 namd

447 dealll

450.soplex

453.povray

454 calculix

459.GemsFDTD

465.tonto

470.lbm

481.wrf

482.sphinx3

Comp 411 - Fall 2015

Language
Fortran

Fortran

Cc

Fortran

C,
Fortran

C,
Fortran

Fortran

C++

C++
C++
C++

C,
Fortran

Fortran

Fortran

Fc.)rtran

SPEC CPU 2006

CFP2006 (Floating Point Component of SPEC CPU2006):

Application Area
Fluid Dynamics

Quantum Chemistry.

Physics / Quantum Chromodynamics

Physics / CFD

Biochemistry / Molecular Dynamics

Physics / General Relativity

Fluid Dynamics

Biology / Molecular Dynamics

Finite Element Analysis

Linear Programming, Optimization

Image Ray-tracing

Structural Mechanics

Computational Electromagnetics

Quantum Chemistry

Fluid Dynamics

Weather

Speech recognition

10/29/15

Brief Description
Computes 3D transonic transient laminar viscous flow.

Gamess implements a wide range of quantum chemical computations. For the SPEC
workload, self-consistent field calculations are performed using the Restricted Hartree Fock
method, Restricted open-shell Hartree-Fock, and Multi-Configuration Self-Consistent Field

A gauge field generating program for lattice gauge theory programs with dynamical quarks.

ZEUS-MP is a computational fluid dynamics code developed at the Laboratory for
Computational Astrophysics (NCSA, University of lllinois at Urbana-Champaign) for the
simulation of astrophysical phenomena.

Molecular dynamics, i.e. simulate Newtonian equations of motion for hundreds to millions of
particles. The test case simulates protein Lysozyme in a solution.

Solves the Einstein evolution equations using a staggered-leapfrog numerical method

Computational Fluid Dynamics (CFD) using Large-Eddy Simulations with Linear-Eddy Model in
3D. Uses the MacCormack Predictor-Corrector time integration scheme.

Simulates large biomolecular systems. The test case has 92,224 atoms of apolipoprotein A-I.

deal.ll is a C++ program library targeted at adaptive finite elements and error estimation. The
testcase solves a Helmholtz-type equation with non-constant coefficients.

Solves a linear program using a simplex algorithm and sparse linear algebra. Test cases
include railroad planning and military airlift models.

Image rendering. The testcase is a 1280x1024 anti-aliased image of a landscape with some
abstract objects with textures using a Perlin noise function.

Finite element code for linear and nonlinear 3D structural applications. Uses the SPOOLES
solver library.

Solves the Maxwell equations in 3D using the finite-difference time-domain (FDTD) method.

An open source quantum chemistry package, using an object-oriented design in Fortran 95.
The test case places a constraint on a molecular Hartree-Fock wavefunction calculation to
better match experimental X-ray diffraction data.

Implements the "Lattice-Boltzmann Method" to simulate incompressible fluids in 3D

Weather modeling from scales of meters to thousands of kilometers. The test case is from a
30km area over 2 days.

A widely-known speech recognition system from Carnegie Mellon University

L17 - Computer Performance

19

Stories Benchmarks Tell

Single-Threaded Floating-Point Performance

on adjusted SPECIp® results

per year

= Intel Xeon

® |ntel Core
Intel Pentium

A Intel tanium

» Intel Celeron
AMD FX

= AMD Opteren
AMD Phenom

* AMD Athlon
IBM POWER

* PowerPC
Fujitsu SPARC

’ ' Sun SPARC
¢ s ..} DEC Alpha
s = MIPS
* HP PA-RISC

Comp 411 - Fall 2015 10/29/15 L17 — Computer Performance 20

It's not just CPUs

Spec2006 (Sun Blade X6270/w dual Xeon X5570s)

O0GCC 4.4.0 CFP2006

O Sun Studio 12 CFP2006

B ntel C++ and Fortran 11.0 CFP2006

Comp 411 - Fall 2015

10/29/15

L17 — Computer Performance 21

Amdahl's Law

(a.k.a where to spend your efforts when improving performance)

_ taﬁected ny

rspeedup

improved unaffectted

Example:
"Suppose a program runs in 100 seconds on a machine, where
multiplies are executed &0% of the time. How much do we need to
improve the speed of multiplication if we want the program to run 4

times faster?"
25 = 80/r + 20 r = 16x

How about making it 5 times faster?

20 = 80/r + 20 r=71¢

Principle: Focus on making the most common case fast.

Amdahl’'s Law applies to H/W and S/W!

Comp 411 - Fall 2015 10/29/15 L17 — Computer Performance 22

Example

Suppose we enhance a machine by making all floating-point
instructions run 5 times faster. If the execution time of some
benchmark before the floating-point enhancement is 10 seconds,
what will the speedup be if only %2 of the 10 seconds is spent
executing floating-point instructions?

6=b5/5+b Relative Perf = 10/6 = 1.67 x

Marketing is looking for a benchmark to show off the new floating
-point unit described above, and wants the overall benchmark to
show at least a speedup of 3. What percentage of the execution
time would floating-point instructions have to be to account in
order to yield our desired speedup on this benchmark?

33.33 = f/5 + (100 — f) =100 - 4f/5 = 83.33

Comp 411 - Fall 2015 10/29/15 L17 — Computer Performance 23

Remember

* When performance is specific to a particular program

— Total execution time is a consistent summary of performance

e For a given architecture performance comes from:

1) increases in clock rate (without adverse CP| affects)
2) improvements in processor organization that lower CPI
3) compiler enhancements that lower CPl and/or instruction count

e Pitfall: Expecting improvements in one aspect of a
machine’s per'Formance to affect the total performance

* You should not always believe everything you read!
So read carefully!

Comp 411 - Fall 2015 10/29/15 L17 — Computer Performance 24

