Binary Mulftipliers

The key trick of multiplication is memorizing
a digit-to-digit table... <l <
Everything else is just adding ololo

1 O | 1

You've got to be
L I T T I I T I A I '/ kidding... It can’t

be that easy

5|1 0| 5|10]| 15 20 25 30 35 40 45

6| 0|6]|12]| 18 24 30 36 42 45 54

710|714 2 28 35 42 49 56 63

&| o & |16 24| 32 40 48 56 64 72

Comp 411 - Fall 2015 101115 L12 — Multiplication 1

Have We Forgotten Something?

Our ALU can add, subtract, shift,

and perForm Boolean functions.
But, even rabbits know how to

multiply...

0

=

But, it is a huge step in terms of logic...
Including a multiplier unit in an ALU
doubles the number of gates used.

A good (compact and high performance) multiplier can also
be tricky to design. Here we will give an overview of some
of the tricks used.

Comp 411 - Fall 2015 101115 L12 — Multiplication 2

Binary Multiplication

The “Binary”
Multiplication
Table Binary multiplication is implemented using
> IxTols the same basic longhand algorithm that
Hey, that you learned in grade school.
looks like an — O O O
AND gate
1|01 As Az A Ao
X 55 Bz B1 BO
AJ.Bi is a “partial product” g A550 AZBo A1Bo AOBO

AsB, AB, AB; A.B
A:aBz A252 A152 AOBZ
+ AsBs; AB; ABs; Apbs

N—_ _
—

Multiplying N-digit number by M-digit humber gives (N+M)-digit result

Easy part: forming partial products (just an AND gate since B, is either O or 1)
Hard part: adding M, N-bit partial products

Comp 411 - Fall 2015 101115 L12 — Multiplication 3

Multiplying in Assembly

One can use this “Shift and Add” approach to write a

multiply function in assemb

Multiplies unsigned arguments

ly language

in $a0 and $al

and returns value in $v0 ignoring overflows

multu: addiu $v0,$0,0 # zero product register
loop: andi $tl, $a0,1 # check low-order bit
beq $t1l,%$0,n0add # do we need to add?
add $v0,$v0, $al # add multiplicand to product
noadd: srl $a0, %$a0,1 # multiplier / 2
sl $al, $al,1l # 2 x multiplicand
bne $a0,$0, lLoop # keep adding if there are
jr $31
Multiplier
ao: %] atl: | ‘Multiplicand
Hum, maybe '
we could do Multiplicand
something ‘ i
more clever. “ Multiplicand
Multiplicand
Multiplicand
a0 * al = vO: Product
Comp 411 - Fall 2015 101115

L12 — Multiplication 4

Multiplier Unit-Block

We introduce a new abstraction to B, S ubbract
aid in the construction of multipliers Add/Subtract | [
called the “Unsigned Multiplier Unit-block” Unit Block Q
We did a similar thing last lecture when we cc? BCI c
converted our adder to an add/subtract ¢ FSA i
unit. I
si

A, are bits of the Multiplicand and B, are

: e | Unsigned A B
bits of the Multiplier. 9 | i

Multiply
Unit Block .

The P inputs and outputs represent PIT”Q
“partial products” which are partial A B
results from adding together shifted C—¢0 FsA OF—"Cyq

instances of the Multiplicand.

The initial PP, is zero.

Comp 411 - Fall 2015 101115 L12 — Multiplication 5

Simple Combinational Multiplier

tpp =10 ™ tpp

A3

N

A2

At

p U U
co HA 5| —co HA' s
hot 16 —5 —
tpp = (2%(N-1) + N) ™ £ ' | v ' | Y '
Components L)) T
N * HA FA = FA “— F sl A ul
N(N-1) * FA o [[N
I | 1 I 1
The Logic A YR,) 1)
of a j FA | FA - Rl g ul
Half- J — j —] . — =
Adder v | I |
0 o wils)lle
relraivaiy g

Comp 411 - Fall 2015

101115

' -'3 than our
‘ S /assembly code?
B
| s

&1

Is this faster

To determine the
timing specification
of a composite
combinational circuit
we find the worst

-case path for every
output to any input.

)

NB: this circuit only
works for
honnegative
operands

L12 — Multiplication 6

"Carry-Save” Combinational Multiplier

A:::rs
can be
Observation: Rather than ; ""l removed
N . a0 AND gate
propagatmg the carries to . % R . I B ouputs
the next adder in each row, TFA TFAd_j Tﬂd—} 4 d:i?jcctlyto
1 1 1 1 the Carry
they can instead be = [L= = 8 inpute of
forwarded to the next T i T T e
column of the following row 7§ 4‘5 d d_j 6]
FA < FA ~— FA = F
[8 gy B (BTt
tPD = 8 * tPD = é—j 6 ﬂ I / This small
- N N * T (\ performance
tPD - (+) tPD _FIA — _|~ _F'A — _l—— _F]A — L";I:;f;eme"t
Components soeme worth
A) | | e e
wrra 10| O) e
FA FA <— FA -
| g il 7; /
il [\e
ot F —

Comp 411 - Fall 2015

101115

L12 — Multiplication 7

Higher-Radix Multiplication

ldea: If we could use, say, 2 bits of the multiplier in generating each partial
product we would halve the number of rows and halve the latency of the

multiplier! A A A A A A
N1 DNz e
| —
M/2 2
]
]
V4
B *A=0*A> 0
Booth’s insight: rewrite 2*A S Ao A

and 3*A cases, leave 4A for'\ = 2*A © 2A or 4A - 2A
next partial product to do! =3*A= 4A-A

Comp 411 - Fall 2015 101115 L12 — Multiplication &

Booth Recoding of Multiplier

current bit pair from previous bit pair
BRA B.. B / action An encoding where
2K+l "2K "~ 2K each bit has the
-89 =[1 ollo d 11 1.0] O 0 0 add O following weights:
= -1 * 20 (-1) 0, o 1 add A W(Byy,,) = -2 * 22K
+2%22 (8) O 1 0| addA W(B,) = 1* 22
r(2)v2t(ag) 9 1 1| 24dZA W) =172
1) * 26 (. su
)72 (4 1 O 1 sub A “— -2"A+A
oo (& 00 1 1 0 | subA
comve 11 % add 0 <~ -A+A
humber?

Yen! Booth recodi A “1” in this bit means the previous stage needed
i o 2-comploment, £0 add 4*A. Since this stage is shifted by 2

integers, now we can bits with respect to the previous stage, adding
build a signed multiplier. 4*A in the previous stage is like adding A in this
stagel

Comp 411 - Fall 2015 101115 L12 — Multiplication 9

Booth Recoding

A B
Logic aurroundl.ng Signed o 1 >
each basic adder: Multiply Sub
Unit Block
- Control lines (x2, Sub, Zero) are Zero
shared across each row
- Must handle the “+1” when Sub is 1 |
(extra half adders in a carry save A
—{coFA ci|—
array) r
Bok.1 Bak Bok| X2 Sub Zero
O O O|X X 1
NOTE: 0 o 1|0 oo
. 0O 1 0|0 O O
- Booth recoding can be used to o 1 1|1 00
. . SR T . 1 O O 1 1 0O
implement signed multiplications i 0o1lo01 0
1 1 O 1 1 O
1 1 1 X X 1

Comp 411 - Fall 2015 101115 L12 — Multiplication 10

Bigger Multipliers

* Using the approaches described we can construct
multipliers of arbitrary sizes, by considering every adder
at the “bit” level

* We can also, build bigger multipliers using smaller ones

Lo 3
poi)

FA FA FA
'f < X
. :
= J‘ﬁ“

* Considering this problem at a higher-level leads to more
“non-obvious™ optimizations

Comp 411 - Fall 2015 101115 L12 — Multiplication 11

Can We Multiply With Less?

* How many operations are needed to multiply 2, 2-digit
humbers?

o 4 multipliers
4 Adders

* This technique generalizes

— You can build an &-bit multiplier using
4 4-bit multipliers and 4 &-bit adders

— O(N2 + N) = O(N2)

Comp 411 - Fall 2015 101115 L12 — Multiplication 12

An O(N?) Multiplier In Logic

The functional blocks would look like

r C A D B
Mult Mult Mult Mult
Add Add
HA Add |—— Add
U

Product bits

Comp 411 - Fall 2015 101115

AB
X CD
DB
DA
CB
CA

L12 — Multiplication 13

A Trick

* The two middle partial products can be computed using
a single multiplier and other partial products

e DA+CB=(C+D)(A+B)—-(CA+DB) A B
e 3 multipliers X CD
& adders DB
* This can be applied recursively DA
(i.e. applied within each partial product) CB
e Leads to O(N'°°) adders CA

* This trick is becoming more popular
as N grows. However, it is less regular,
and the overhead of the extra adders
is high for small N

Comp 411 - Fall 2015 101115 L12 — Multiplication 14

Let's Try it By Hand

1) Choose 2, 2 digit numbers to multiply ab x cd

42x 57 42x57=??
2) Multiply py=axc, p,=bxd, ps=(c+d)(a+Db)
P1=4X5=12,P2=2)(7=14’

05 = (4+2)(3+7) = 60
3) Find partial subtracted sum, S5 = p; — (p; + p,)
56 = 60 — (12 + 14) = 34
4) Add to find product, p = 100*p, + 10*SS + p,
p = 1200 + 340 + 14 = 1554 = 42 x 37

Comp 411 - Fall 2015 101115 L12 — Multiplication 15

An O(N!-58) Multiplier In Logic

The functional blocks would look like

’\\/'/
AB Mult | | Add | | Add | | Mult
- Tl T
DB Mult | | Add || Add btp
55 N\ v
CA Add “8
_IQ

Where HA Add [
55 = (C+D)(A+B) - (CA+DB) | | \

~
Product bits

Comp 411 - Fall 2015 101115 L12 — Multiplication 16

Binary Division

* Division merely reverses the process

— Rather than adding successively larger partial products,
subtract successively smaller divisors

— When multiplying, we knew which partial products to actually add
(based on the whether the corresponding bit was a O or a 1)

— In division, we have to try *both ways™

PPPPPPPP

- DDDD Q; =0or 1?

- DDDD Q, =0 or 1?

- DDDD Q =0or 1?

- - DDDD Q=0 or 1?
TS RRRR

Multiplication
Upside-down

Comp 411 - Fall 2015 101115 L12 — Multiplication 17

[J ® [J ®
Restoring Division
@ Aligh MSBs of Divisor and Remainder, K = number of bits shifted, Quotie@

[
»

Subtract Divisor from the
Remainder leave the result
in the Remainder

=0 <0

Test Remainder

Restore Remainder by adding Divisor
Shift Quotient left one bit
set rightmost bit = O

Shift Quotient left one bit
set rightmost bit =1

Shift Divisor right one bit

Repeat K+1
times

Comp 411 - Fall 2015 101115 L12 — Multiplication 18

Division Example

Step 1: Step 2:
R D Q R D Q
42 = 7 = 6 G 42 + 7 = 6 d. Quotient = 0
Start:
Q = 0 = 00000000 Q = 0 =..00000000
R= 42 = 00101010 R= 42 = 00101010
D = (7%8) = 00111000 D = (7%4) = 00011100 7]
nder by adding Divieor
Note: K = 3, s0 repeat 4 times :;::::om
Subtract: Subtract: -
R = 42 = 00101010 R = 42 = 00101010
D = -(7%8) = 00111000 D = -(7*4) = 00011100
~14 = 11110001 R = 14 =.00001110
Restore:
R = 42 = 00101010
Shifts:
Shifts: Q = 00000001
Q = 00000000 D = 00001110
D = 00011100

Comp 411 - Fall 2015 101115 L12 — Multiplication 19

Division Example (cont)

Step 3:
R D Q
42 -~ 7 = 6
Q = 1 = 00000001
R = 14 = 00001110
D = (7%¥2) = 00001110
Subtract:
R = 14 = 00001110
D = -(7%2) = 00001110
0 = 00000000
No Restore
Shifts:
Q = 00000011
D = 00000111

Comp 411 - Fall 2015

101115

Step 4:
R D Q
@ 42 -+~ 7 = 6 oo
Q = 3. ..=. 00000011
R = 0 = 00000000
D = 7 =-00000111
entra g Diiooe
——"Subtract: =0
R = 0 =-00000000
D = -7 = 00000111
-7...=-11111001
Restore:
R = 0 = 00000000
Shifts:
Q = 00000110
D = 00000011
R = 00000000

L12 — Multiplication 20

Division Big Boxes

We can use this algorithm to
design a combinational divider. Sl Lol
It takes as inputs a divisor, R, a R
dividend, D, and outputs a —

-7
<O

>
Q.
Q.

quotient and a remainder. o<
Dividing is generally slower than

multiplication. 2

One quotient-bit _| - Add

The worst case per adder stage — —
propagation delay waits for every |

adder stage to generate its X

most significant bit, thus, each Add
stage has to waiting for the full M

mux

sum from the previous stage to
complete.

Remainder

Comp 411 - Fall 2015 101115 L12 — Multiplication 21

Next Time

e We dive into floating point arithmetic
[

Y %

a7 —

IESS

Comp 411 - Fall 2015 10/1115 L12 — Multiplication 22

