
L12 – Multiplication 1 Comp 411 – Fall 2015 10/1/15

Binary Multipliers

× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 32 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

× 0 1

0 0 0

1 0 1

You’ve got to be
 kidding… It can’t
 be that easy

The key trick of multiplication is memorizing
 a digit-to-digit table…
Everything else is just adding

L12 – Multiplication 2 Comp 411 – Fall 2015 10/1/15

Have We Forgotten Something?
Our ALU can add, subtract, shift,

and perform Boolean functions.
But, even rabbits know how to
multiply…

But, it is a huge step in terms of logic…
Including a multiplier unit in an ALU
doubles the number of gates used.

A good (compact and high performance) multiplier can also
 be tricky to design. Here we will give an overview of some
 of the tricks used.

L12 – Multiplication 3 Comp 411 – Fall 2015 10/1/15

Binary Multiplication

A0 A1 A2 A3
B0 B1 B2 B3

A0B0 A1B0 A2B0 A3B0

A0B1 A1B1 A2B1 A3B1

A0B2 A1B2 A2B2 A3B2

A0B3 A1B3 A2B3 A3B3

x

+

AjBi is a “partial product”

Multiplying N-digit number by M-digit number gives (N+M)-digit result

Easy part: forming partial products (just an AND gate since BI is either 0 or 1)
Hard part: adding M, N-bit partial products

1 0 1
0 0 0
1 0 X

The “Binary”
 Multiplication

 Table

Hey, that
 looks like an
 AND gate

Binary multiplication is implemented using
 the same basic longhand algorithm that
 you learned in grade school.

L12 – Multiplication 4 Comp 411 – Fall 2015 10/1/15

000001010000000101

Multiplying in Assembly
One can use this “Shift and Add” approach to write a
 multiply function in assembly language

Multiplies unsigned arguments in $a0 and $a1 !
and returns value in $v0 ignoring overflows !
multu: addiu $v0,$0,0 # zero product register !
loop: andi $t1,$a0,1 # check low-order bit !
 beq $t1,$0,noadd # do we need to add? !
 add $v0,$v0,$a1 # add multiplicand to product !
noadd: srl $a0,$a0,1 # multiplier / 2 !
 sll $a1,$a1,1 # 2 * multiplicand !
 bne $a0,$0,loop # keep adding if there are !
 jr $31 !

Multiplicand a0: a1:

Product a0 * a1 = v0:

Multiplicand
Multiplicand

Multiplicand
Multiplicand

Multiplier

Hum, maybe
 we could do
 something
 more clever.

L12 – Multiplication 5 Comp 411 – Fall 2015 10/1/15

Multiplier Unit-Block

 A B
CO CI
 S

FA

Ai

Bi Subtract

Ci Ci-1

Si

Add/Subtract
Unit Block

 A B
CO CI
 S

FA

ppi-1

Ak Bi

Ck Ck-1

ppi

Unsigned
Multiply

Unit Block

We introduce a new abstraction to
aid in the construction of multipliers
called the “Unsigned Multiplier Unit-block”

We did a similar thing last lecture when we
 converted our adder to an add/subtract
 unit.

Ak are bits of the Multiplicand and Bi are
 bits of the Multiplier.

The PP inputs and outputs represent
“partial products” which are partial
results from adding together shifted
instances of the Multiplicand.

The initial PP0 is zero.

L12 – Multiplication 6 Comp 411 – Fall 2015 10/1/15

Simple Combinational Multiplier

tPD = 10 * tPD

not 16

NB: this circuit only
 works for
 nonnegative
 operands

Components
N * HA

N(N-1) * FA

The Logic
of a
Half-
Adder

CO

A B

S

HA
 A
Co B
 S

HA
 A
Co B
 S

HA
 A
Co B
 S

HA
 A
Co B
 S

tPD = (2*(N-1) + N) * tPD

To determine the
 timing specification
 of a composite
 combinational circuit
 we find the worst
-case path for every
 output to any input.

Is this faster
 than our
 assembly code?

L12 – Multiplication 7 Comp 411 – Fall 2015 10/1/15

“Carry-Save” Combinational Multiplier

tPD = 8 * tPD

Components
N * HA
N2 * FA

Observation: Rather than
 propagating the carries to
 the next adder in each row,
 they can instead be
 forwarded to the next
 column of the following row

This small
 performance
 improvement
 hardly
 seems worth
 the effort,
 however, this
 design is
 easier to
 “pipeline”.

These
 Adders
 can be
 removed,
 and the
 AND gate
 outputs
 tied
 directly to
 the Carry
 inputs of
 the next
 stage.

tPD = (N+N) * tPD

L12 – Multiplication 8 Comp 411 – Fall 2015 10/1/15

BK+1,K*A = 0*A
 = 1*A
 = 2*A Just a shift
 = 3*A Requires adding!

Higher-Radix Multiplication

 AN-1 AN-2 … A3 A2 A1 A0
 BM-1 BM-2 … B3 B2 B1 B0 x

...

2 M/2

Idea: If we could use, say, 2 bits of the multiplier in generating each partial
 product we would halve the number of rows and halve the latency of the
 multiplier!

BK+1,K*A = 0*A ! 0
 = 1*A ! A
 = 2*A ! 2A or 4A – 2A
 = 3*A ! 4A – A!

Booth’s insight: rewrite 2*A
 and 3*A cases, leave 4A for
 next partial product to do!

L12 – Multiplication 9 Comp 411 – Fall 2015 10/1/15

Booth Recoding of Multiplier

B2K+1

0
0
0
0
1
1
1
1

B2K

0
0
1
1
0
0
1
1

B2K-1

0
1
0
1
0
1
0
1

action

add 0
add A
add A

add 2*A
sub 2*A
sub A
sub A
add 0

A “1” in this bit means the previous stage needed
 to add 4*A. Since this stage is shifted by 2
 bits with respect to the previous stage, adding
 4*A in the previous stage is like adding A in this
 stage!

-2*A+A

-A+A

from previous bit pair current bit pair

An encoding where
 each bit has the
 following weights:

W(B2K+1) = -2 * 22K

W(B2K) = 1 * 22K
W(B2K-1) = 1 * 22K

-89 = 1 0 1 0 0 1 1 1 .0
= -1 * 20 (-1)
+ 2 * 22 (8)

+ (-2) * 24 (-32)

+ (-1) * 26 (-64)

Hey, isn’t
 that a

 negative
 number?

-89

Yep! Booth recoding
 works for 2-Complement
 integers, now we can
 build a signed multiplier.

L12 – Multiplication 10 Comp 411 – Fall 2015 10/1/15

Booth Recoding

 A B
CO CI
 S

FA

0 1 x2
Sub

Zero

Ai Ai-1
Logic surrounding

 each basic adder:

 - Control lines (x2, Sub, Zero) are
 shared across each row
 - Must handle the “+1” when Sub is 1
 (extra half adders in a carry save
 array)

NOTE:
 - Booth recoding can be used to
 implement signed multiplications

B2K+1 B2K B2K-1 x2 Sub Zero

0 0 0 X X 1
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 1 1 0
1 1 1 X X 1

Signed
Multiply

Unit Block

L12 – Multiplication 11 Comp 411 – Fall 2015 10/1/15

Bigger Multipliers

•  Using the approaches described we can construct
 multipliers of arbitrary sizes, by considering every adder
 at the “bit” level

•  We can also, build bigger multipliers using smaller ones

•  Considering this problem at a higher-level leads to more
 “non-obvious” optimizations

×

A
 4

B
 4

 4

PHI

 4

PLO

L12 – Multiplication 12 Comp 411 – Fall 2015 10/1/15

Can We Multiply With Less?

•  How many operations are needed to multiply 2, 2-digit
 numbers?

•  4 multipliers
4 Adders

•  This technique generalizes
–  You can build an 8-bit multiplier using

4 4-bit multipliers and 4 8-bit adders
–  O(N2 + N) = O(N2)

 A B
 X C D
 DB
 DA
 C B
 CA

+
+

+
+

L12 – Multiplication 13 Comp 411 – Fall 2015 10/1/15

An O(N2) Multiplier In Logic

The functional blocks would look like

Mult Mult Mult Mult

B C A D B

Add Add

Add Add HA

Product bits

 A B
 X C D
 DB
 DA
 C B
 CA

L12 – Multiplication 14 Comp 411 – Fall 2015 10/1/15

A Trick

•  The two middle partial products can be computed using
 a single multiplier and other partial products

•  DA + CB = (C + D)(A + B) – (CA + DB)
•  3 multipliers

8 adders
•  This can be applied recursively

(i.e. applied within each partial product)
•  Leads to O(N1.58) adders
•  This trick is becoming more popular

as N grows. However, it is less regular,
and the overhead of the extra adders
is high for small N

 A B
 X C D
 DB
 DA
 C B
 CA

L12 – Multiplication 15 Comp 411 – Fall 2015 10/1/15

Let’s Try it By Hand

1)  Choose 2, 2 digit numbers to multiply ab × cd

 42 x 37
2)  Multiply p1 = a x c, p2 = b x d, p3 = (c + d)(a + b)

p1 = 4 x 3 = 12, p2 = 2 x 7 = 14,
p3 = (4+2)(3+7) = 60

3)  Find partial subtracted sum, SS = p3 – (p1 + p2)
 SS = 60 – (12 + 14) = 34

4)  Add to find product, p = 100*p1 + 10*SS + p2

 p = 1200 + 340 + 14 = 1554 = 42 x 37

42 x 37 = ?

L12 – Multiplication 16 Comp 411 – Fall 2015 10/1/15

An O(N1.58) Multiplier In Logic

The functional blocks would look like

Mult

Mult

Mult

C A D B

Add Add

Add Add

HA

Product bits

Add Add

Add Add

 A B
 X C D
 DB
 SS
 CA

Where
 SS = (C+D)(A+B) – (CA+DB)

SS

Note: Adders with
 a bubble on one
 of their inputs
 becomes a
 subtractor in
 this notation.

L12 – Multiplication 17 Comp 411 – Fall 2015 10/1/15

Binary Division

•  Division merely reverses the process
–  Rather than adding successively larger partial products,

 subtract successively smaller divisors
–  When multiplying, we knew which partial products to actually add

 (based on the whether the corresponding bit was a 0 or a 1)
–  In division, we have to try *both ways*

Multiplication
 Upside-down

 P P P P P P P P
- D D D D Q3 = 0 or 1?
- D D D D Q2 = 0 or 1?
- D D D D Q1 = 0 or 1?
- D D D D Q0 = 0 or 1?
 R R R R

L12 – Multiplication 18 Comp 411 – Fall 2015 10/1/15

Restoring Division
Start: Align MSBs of Divisor and Remainder, K = number of bits shifted, Quotient = 0

Subtract Divisor from the
Remainder leave the result

in the Remainder

Test Remainder

Shift Quotient left one bit
set rightmost bit = 1

Restore Remainder by adding Divisor
Shift Quotient left one bit

set rightmost bit = 0

Shift Divisor right one bit

Repeat K+1
times

≥ 0 < 0

L12 – Multiplication 19 Comp 411 – Fall 2015 10/1/15

Division Example
Step 1:
 R D Q
42 ÷ 7 = 6

Start:
Q = 0 = 00000000
R = 42 = 00101010
D = (7*8) = 00111000

Subtract:
R = 42 = 00101010
D = -(7*8) = 00111000
 -14 = 11110001
Restore:
R = 42 = 00101010

Shifts:
 Q = 00000000
 D = 00011100

Step 2:
 R D Q
42 ÷ 7 = 6

Q = 0 = 00000000
R = 42 = 00101010
D = (7*4) = 00011100

Subtract:
R = 42 = 00101010
D = -(7*4) = 00011100
R = 14 = 00001110

Shifts:
 Q = 00000001
 D = 00001110

Note: K = 3, so repeat 4 times

L12 – Multiplication 20 Comp 411 – Fall 2015 10/1/15

Division Example (cont)
Step 3:
 R D Q
42 ÷ 7 = 6

Q = 1 = 00000001
R = 14 = 00001110
D = (7*2) = 00001110

Subtract:
R = 14 = 00001110
D = -(7*2) = 00001110
 0 = 00000000

No Restore
Shifts:
 Q = 00000011
 D = 00000111

Step 4:
 R D Q
42 ÷ 7 = 6

Q = 3 = 00000011
R = 0 = 00000000
D = 7 = 00000111

Subtract:
R = 0 = 00000000
D = -7 = 00000111
 -7 = 11111001
Restore:
R = 0 = 00000000
Shifts:
 Q = 00000110
 D = 00000011
 R = 00000000

L12 – Multiplication 21 Comp 411 – Fall 2015 10/1/15

Division Big Boxes

Shift Left N

D R

R’

Add

mux 0 1
Shift Right

qN-1

Add

0 1
Shift Right

qN-2

mux

Add

0 1
Shift Right

qN-3

mux

Remainder

One quotient-bit
per adder stage

We can use this algorithm to
 design a combinational divider.
 It takes as inputs a divisor, R, a
 dividend, D, and outputs a
 quotient and a remainder.

Dividing is generally slower than
 multiplication.

The worst case
propagation delay waits for every
 adder stage to generate its
 most significant bit, thus, each
 stage has to waiting for the full
 sum from the previous stage to
 complete.

L12 – Multiplication 22 Comp 411 – Fall 2015 10/1/15

Next Time

•  We dive into floating point arithmetic

