
L07 – Stacks and Procedures 1 Comp 411 – Fall 2015 9/15/15

Stacks and Procedures

I forgot, am I
the Caller
or Callee?

Support for High-Level Language constructs are an integral
 part of modern computer organization. In particular,
 support for subroutines, procedures, and functions.

Don’t know. But, if
 you PUSH again I’m

 gonna POP you.

L07 – Stacks and Procedures 2 Comp 411 – Fall 2015 9/15/15

An Aside: Pseudoinstructions
MIPS has relatively few instructions, however, it is possible to

 “fake” new instructions by taking advantage of special ISA
 properties (i.e. %0 is always zero, clever use of immediate
 values)

Examples:
	move $d,$s becomes addi $d,$s,0 	
	neg $d,$s becomes sub $d,$0,$s  
negu $d,$s becomes subu $d,$0,$s	
	not $d,$s 	 becomes nor $d,$s,$0	

 	subiu $d,$s,imm16 becomes addiu $d,$s,-imm16	
	b label becomes beq $0,$0,label	
	sge $d,$s,$t becomes slt $d,$t,$s	
	nop becomes sll $0,$0,0	

Do
Nothing

Why
both?

Which, BTW, assembles
 to 0x00000000

L07 – Stacks and Procedures 3 Comp 411 – Fall 2015 9/15/15

Uber Pseudoinstruction
There is one pseudo instruction where MIPS goes crazy. It essentially
 generates different instructions depending on the context:

 1) la $d, offset($base)
 2) la $d, offset
 3) la $d, ($base)

It mimics the format of lw/sw instructions, but rather than
reading/writing the contents of memory, it loads it destination
register with the “effective address” that would have been accessed.

As a result it can generate any one of the following five sequences:

 1) lui $d,offset 1) lui $1,offset  
 ori $d,$d,offset ori $1,$1,offset  
 addiu $d,$base,$1 		

2) ori $d,$0,offset 2) ori $1,$0,offset 3) addiu $d,$base,0	
	 	 	 	 addu $d,$base,$1 		

	 	 	 		

The MIPS compiler loves
 this pseudoinstruction.
 It often uses it to load
 a constant into a
 register.

L07 – Stacks and Procedures 4 Comp 411 – Fall 2015 9/15/15

The Beauty of Procedures

•  Reusable code fragments (modular design)
 clear_screen();
 … # code to draw a bunch of lines
 clear_screen();
 …

•  Parameterized procedures (variable behaviors)
 line(x1, y1, x2, y2, color);
 line(x2,y2,x3,y3, color);
 …

•  Functions (procedures that return values)
 xMax = max(max(x1,x2),x3);
 yMax = max(max(y1,y2),y3);

for (i=0; i < N-1; i++)
 line(x[i],y[i],x[i+1],y[i+1],color);
line(x[i],y[i],x[0],y[0],color);

L07 – Stacks and Procedures 5 Comp 411 – Fall 2015 9/15/15

More Procedure Power
•  Global vs. Local scope (Name Independence)

int x = 9;

int fee(int x) {
 return x+x-1;

}

int foo(int i) {
 int x = 0;
 while (i > 0) {

 x = x + fee(i);
 i = i - 1;
 }

 return x;
}

main() {
 fee(foo(x));
}

These are different “x”s

This is yet another “x”

How do we
keep track of
all the
variables

That “fee()” seems odd
 to me? And, foo()’s a
 little square.

L07 – Stacks and Procedures 6 Comp 411 – Fall 2015 9/15/15

Using Procedures
•  A “calling” program (Caller) must:

–  Provide procedure parameters. In other words, put the
 arguments in a place where the procedure can access them

–  Transfer control to the procedure.
“Jump” to it, and provide a “link” back

•  A “called” procedure (Callee) must:
–  Acquire/create resources needed to perform the function

(local variables, registers, etc.)
–  Perform the function
–  Place results in a place where the Caller can find them
–  Return control back to the Caller through the supplied link

•  Solution (a least a partial one):
–  WE NEED CONVENTIONS, agreed upon standards for how

 arguments are passed in and how function results are retrieved
–  Solution part #1: Allocate registers for these specific functions

L07 – Stacks and Procedures 7 Comp 411 – Fall 2015 9/15/15

MIPS Register Usage
•  Conventions designate registers for procedure arguments ($4-$7)

 and return values ($2-$3).
•  The ISA designates a “linkage register” for calling procedures ($31)
•  Transfer control to Callee using the jal instruction
•  Return to Caller with the jr $31 or jr $ra instruction

The “linkage
 register” is
 where the
 “return
 address”
 back to the
 callee is
 stored.
 This allows
 procedures
 to be called
 from any
 place, and
 for the
 caller to
 come back
 to the
 place where
 it was
 invoked.

L07 – Stacks and Procedures 8 Comp 411 – Fall 2015 9/15/15

And It “Sort Of” Works
•  Example:
.globl x
.data
x: .word 9

.globl fee

.text
fee:
 addu $v0,$a0,$a0
 addiu $v0,$v0,-1
 jr $ra

.globl main

.text
main:
 lw $a0,x
 jal fee
 jr $ra

Caller

Callee

Works for cases where the
Callees need few resources
and call no other functions.

This type of function
(one that calls no other)
is called a LEAF function.

But there are still a few issues:
•  How can a Callee call functions?
•  More than 4 arguments?
•  Local variables?
•  Where will main return to?

Let’s consider the worst case of
 a Callee as a Caller…

That’s
 broken!

L07 – Stacks and Procedures 9 Comp 411 – Fall 2015 9/15/15

Recursion! A Callee who calls itself!

int sqr(int x) {
 if (x > 1)
 x = sqr(x-1)+x+x-1;
 return x;
}

main()
{
 sqr(10);
}

sqr(10) = sqr(9)+10+10-1 = 100
sqr(9) = sqr(8)+9+9-1 = 81
sqr(8) = sqr(7)+8+8-1 = 64
sqr(7) = sqr(6)+7+7-1 = 49
sqr(6) = sqr(5)+6+6-1 = 36
sqr(5) = sqr(4)+5+5-1 = 25
sqr(4) = sqr(3)+4+4-1 = 16
sqr(3) = sqr(2)+3+3-1 = 9
sqr(2) = sqr(1)+2+2-1 = 4
sqr(1) = 1
sqr(0) = 0

Oh, recursion
 gives me a
 headache.

How do we go about writing callable
 procedures? We’d like to support not
 only LEAF procedures, but also
 procedures that call other procedures,
 ad infinitum (e.g. a recursive function).

L07 – Stacks and Procedures 10 Comp 411 – Fall 2015 9/15/15

Procedure Linkage: First Try
sqr: addiu $t0,$0,1
 slt $t0,$t0,$a0 # 1 < x ?
 beq $t0,$0,endif
 addu $t0,$0,$a0 # save x
 addiu $a0,$a0,-1
 jal sqr # sqr(x-1)
 addu $v0,$v0,$t0
 addu $v0,$v0,$t0
 addiu $v0,$v0,-1
 b rtn
endif: move $v0,$a0
rtn: jr $ra MIPS Convention:

•  pass 1st arg x in $a0
•  save return addr in $ra
•  return result in $v0
•  use only temp registers
 to avoid saving stuff

int sqr(int x) {
 if (x > 1)
 x = sqr(x-1)+x+x-1;
 return x;
}

main()
{
 sqr(10);
}

Caller

Callee/Caller

$t0 is clobbered
on successive calls.

We also
clobber our
return
address, so
there’s no
way back!

Will saving “x” in some other
 register or at some fixed
 memory location help? (Nope)

L07 – Stacks and Procedures 11 Comp 411 – Fall 2015 9/15/15

A Procedure’s Storage Needs
Basic Overhead for Procedures/Functions:

•  Caller sets up ARGUMENTs for callee
f(x,y,z) or worse... sin(a+b)

•  Caller invokes Callee while saving a
“return address” to get back

•  Callee saves stuff that Caller expects
to remain unchanged

•  Callee executes
•  Callee passes results back to Caller.

Local variables of Callee:
...
{
int x, y;

 ... x ... y ...;
}

Each of these is specific to a “particular” invocation or
 activation of the Callee. Collectively, the arguments
 passed in, the return address, and the callee’s local
 variables are its activation record, or call frame.

In C it’s the caller’s job to
 evaluate its arguments as
 expressions, and pass the
 result as an argument to the
 callee… Therefore, the CALLEE
 has to save arguments if it
 wants access to them after
 calling some other procedure,
 because they might not be
 around in any variable, to look
 up later.

L07 – Stacks and Procedures 12 Comp 411 – Fall 2015 9/15/15

Lives of Activation Records
int sqr(int x) {
 if (x > 1)
 x = sqr(x-1)+x+x-1;
 return x;
}

sqr(3)

TIME

A procedure call creates a new
 activation record. Caller’s
 record is preserved because we’ll
 need it when call finally returns.

Return to previous activation record
 when procedure finishes,
 permanently discarding activation
 record created by call we are
 returning from.

sqr(3)

sqr(2)

sqr(3)

sqr(2)

Where do we store
 activation
 records?

sqr(3)

sqr(2)

sqr(1)

sqr(3)

Each call of sqr(x) has a different notion of
 what “x” is, and a different place to return to.

L07 – Stacks and Procedures 13 Comp 411 – Fall 2015 9/15/15

We Need Dynamic Storage!

What we need is a SCRATCH
 memory for holding
 temporary variables. We’d like
 for this memory to grow and
 shrink as needed. And, we’d
 like it to have an easy
 management policy.

Some interesting
 properties of
 stacks:

SMALL OVERHEAD.
 Everything is
 referenced relative
 to the top, the
 so-called
 “top-of-stack”

Add things by
 PUSHING new
 values on top.

Remove things by
 POPPING off values.

One possibility is a

 STACK

A last-in-first-out (LIFO)
data structure.

L07 – Stacks and Procedures 14 Comp 411 – Fall 2015 9/15/15

MIPS Stack Convention
CONVENTIONS:

• Dedicate a register for
the Stack Pointer
($sp = $29).

• Stack grows DOWN
 (towards lower
 addresses) on
 pushes and allocates

• $sp points to the last or
TOP *used* location.

• Stack is placed far away
from the program
and its data

$sp

Higher addresses

Lower addresses

Humm… Why
is that the TOP
of the stack?

Other possible implementations include:
 1) stacks that grow “UP”
 2) SP points to first UNUSED location

Reserved

“text” segment
(Program)

“stack” segment
800000016

Program
 data

1000000016

0040000016

1000800016 $gp

Recall that directly
 addressable global
 variables were allocated
 relative to a special
 “global pointer”

L07 – Stacks and Procedures 15 Comp 411 – Fall 2015 9/15/15

Stack Management Primitives
ALLOCATE k: reserve k WORDS of stack
 Reg[SP] = Reg[SP] - 4*k

DEALLOCATE k: release k WORDS of stack
 Reg[SP] = Reg[SP] + 4*k

PUSH $x: push Reg[x] onto stack
Reg[SP] = Reg[SP] - 4
Mem[Reg[SP]] = Reg[x]

POP $x: pop the value on the top of the stack into Reg[x]
 Reg[x] = Mem[Reg[SP]]

 Reg[SP] = Reg[SP] + 4;

addiu $sp,$sp,-4
sw $x, ($sp)

lw $x, ($sp)
addiu $sp,$sp,4

addiu $sp,$sp,-4*k

addiu $sp,$sp,4*k

An ALLOCATE 1 followed by a store

A load followed by a DEALLOCATE 1

L07 – Stacks and Procedures 16 Comp 411 – Fall 2015 9/15/15

Fun with Stacks
 Stacks can be used to squirrel away variables for

later. For instance, the following code fragment
can be inserted anywhere within a program.

 #
 # Argh!!! I’m out of registers Scotty!!
 #
 addiu $sp,$sp,-8 # allocate 2
 sw $s0,4($sp) # Free up s0
 sw $s1,0($sp) # Free up s1
 lw $s0,dilithum_xtals
 lw $s1,seconds_til_explosion
suspense: addiu $s1,$s1,-1
 bne $s1,$0,suspense
 sw $s0,warp_engines
 lw $s1,0($sp) # Restore s1
 lw $s0,4($sp) # Restore s0
 addiu $sp,$sp,8 # deallocate 2

AND Stacks can also be used to solve other problems...

You should
ALWAYS
allocate
prior to

saving, and
deallocate

after
restoring
in order to
be SAFE!

L07 – Stacks and Procedures 17 Comp 411 – Fall 2015 9/15/15

Of course, the
MIPS convention
is this case.

What needs to be saved?
 CHOICE 1… anything that a Callee touches

 (except the return value registers)
 CHOICE 2… Give the Callee access to everything

 (make the Caller will save those
 registers it expects to be unchanged)

 CHOICE 3… Something in between.
 (Give the Callee some registers to
 play with. But, make him save others
 if they are not enough, and also
 provide a few registers that the caller
 can assume will not be changed by the
 callee.)

More MIPS Procedure Conventions

L07 – Stacks and Procedures 18 Comp 411 – Fall 2015 9/15/15

Stack Frame Overview

FP:

SP:

Saved regs

Local variables

Args

(unused)

The STACK FRAME contains storage for the
 CALLER’s volatile state that must be
 preserved after the invocation of CALLEEs.
In addition, the CALLEE uses the stack for:

 1) Accessing the arguments that the
 CALLER passes to it
 (specifically, the 5th and greater)

 2) Saving non-temporary registers that
 it needs to modify

 3) Accessing its own local variables
The boundary between stack frames falls at
 the first word of state saved by the
 CALLEE, and just after the 1st argument
passed in from the CALLER. A FRAME
 POINTER, $fp, (if needed) keeps track of
 this boundary between stack frames. It
 also tracks where local variables are
 allocated.

It’s possible to use only the SP to
 access a stack frame, but the offsets
 may change due to ALLOCATEs and
 DEALLOCATEs. For convenience a $fp
 is used to provide CONSTANT offsets
 to local variables and arguments

CALLEE’s
Stack
 Frame

CALLER’s
Stack
 Frame

Args, if Caller

L07 – Stacks and Procedures 19 Comp 411 – Fall 2015 9/15/15

Procedure Stack Usage
ADDITIONAL space must be allocated in the stack frame for:

1.  Any LOCAL variables declared within the procedure
2.  Any SAVED registers the procedure uses ($s0-$s7, $ra, $fp)
3.  Any TEMPORARY registers that the procedure wants preserved

IF it calls other procedures ($t0-$t9)
4.  Other TEMP space IF the procedure runs out of registers (RARE)
5.  Enough “outgoing” arguments to satisfy the worse case

 ARGUMENT SPILL of ANY procedure it calls.
(SPILL is the number of arguments greater than 4).

Reminder; stack frames are extended by multiples of 2 word
 (8 bytes). By convention, the above order is the order in which
 storage is allocated

Each procedure has keep track of how
 many SAVED and TEMPORARY
 registers are on the stack in order to
 calculate the offsets to LOCAL
 VARIABLES.

PRO: The MIPS stack frame convention
 minimizes the number of stack
 ALLOCATEs

CON: The MIPS stack frame convention
 tends to allocate larger stack frames
 than needed, thus wasting memory

L07 – Stacks and Procedures 20 Comp 411 – Fall 2015 9/15/15

More MIPS Register Usage
•  The registers $s0-$s7, $sp, $ra, $gp, $fp, and the memory contents

 “above” the stack pointer must be preserved by the CALLEE
•  The CALLEE is free to use $t0-$t9, $a0-$a3, and $v0-$v1, and the

 memory below the stack pointer.
•  No “user” program can use $k0-$k1, or $at

L07 – Stacks and Procedures 21 Comp 411 – Fall 2015 9/15/15

Stack Snap Shots

CALLER’S
FRAME

Caller’s local “x”

…

Caller’s local “temp”

Space for $s2

Space for $s1

Space for $ra

Space for $fp

Arg[5]

Arg[4]

Arg[3]

Arg[2]

Arg[1]

Arg[0]

Callee’s local “x”

Space for Caller’s $ra

Space for Caller’s $fp

Arg[3]

Arg[2]

Arg[1]

Arg[0]

CALLEE’S
FRAME

$sp (after call)

$sp (prior to call)

CALLER’s $fp

CALLEE’s $fp

Shown on the right is a snap shot of a
 program’s stack contents, taken at some
 instance in time. One can mine a lot of
 information by inspecting its contents.

Can we determine the number of CALLEE
 arguments?

Can we determine the
maximum number of
arguments needed by
any procedure called
by the CALLER?

Where in the CALLEE’s
stack frame might one
find the CALLER’s $fp?

NOPE

Yes, there can be
no more than 6

It MIGHT be at Mem[$fp+8]

L07 – Stacks and Procedures 22 Comp 411 – Fall 2015 9/15/15

Simple Cases
A leaf needing minimal resources:

int isOdd(int x) {	
 return (x & 1);	
}	

A function that calls others and
 has local variables:

int parity(a,b,c,d) {	
 int sum = a + b + c + d;	
 return isOdd(sum);	
}	

 Assembly code:

isOdd: andi $2,$4,1	
L_1: jr $31	

parity: addiu $sp,$sp,-32 	# allocate 8 words	
 sw $31,20($sp) 	# save return address	
 sw $4,0+32($sp) 	# save “a” 	
 sw $5,4+32($sp) 	# save “b”	
 sw $6,8+32($sp) 	# save “c”	
 sw $7,12+32($sp) 	# save “d”	
 lw $24,0+32($sp) 	# get “a”	
 lw 	 $15,4+32($sp) 	# get “b”	
 addu $24,$24,$15 	# sum = “a” + “b”	
 lw $15,8+32($sp) 	# get “c”	
 addu $24,$24,$15 	# sum += “c”	
 lw $15,12+32($sp) 	# get “d”	
 addu $24,$24,$15 	# sum += d	
 sw $24,-4+32($sp) 	# save “sum”	
 lw $4,-4+32($sp) 	# load “sum” as $a0	
 jal isOdd 	 	# call isOdd	
L_2: lw $31,20($sp) 	# get return address	
 addiu $sp,$sp,32 	# deallocate space	
 jr $31 # answer is in $v0 	

No stack funny
 business at all?

L07 – Stacks and Procedures 23 Comp 411 – Fall 2015 9/15/15

Simple Cases
A leaf needing minimal resources:

int isOdd(int x) {	
 return (x & 1);	
}	

A function that calls others and
 has local variables:

int parity(a,b,c,d) {	
 int sum = a + b + c + d;	
 return isOdd(sum);	
}	

 Assembly code:

isOdd: andi $2,$4,1	
L_1: jr $31	

parity: addiu $sp,$sp,-32	
 sw $31,20($sp)	
 sw $4,0+32($sp)	
 sw $5,4+32($sp)	
 sw $6,8+32($sp)	
 sw $7,12+32($sp)	
 lw $24,0+32($sp)	
 lw 	 $15,4+32($sp)	
 addu $24,$24,$15	
 lw $15,8+32($sp)	
 addu $24,$24,$15	
 lw $15,12+32($sp)	
 addu $24,$24,$15	
 sw $24,-4+32($sp)	
 lw $4,-4+32($sp)	
 jal isOdd	
L_2: lw $31,20($sp)	
 addiu $sp,$sp,32	
 jr $31 	

No stack funny
 business at all?

$sp !
(after call)

$sp !
(before

call)

Contents

$a3 = parity.d

$a2 = parity.c

$a1 = parity.b

$a0 = parity.a

“sum”

unused

$ra

$fp

$a3

$a2

$a1

$a0 = x

Notice that
 the caller
 allocates
 space for the
 first four
 arguments
 to functions
 that it might
 call in its
 stack frame,
 even though
 it never
 pushes
 values into
 them.
 However, the
 callee can
 safely save
 them if
 needed.

L07 – Stacks and Procedures 24 Comp 411 – Fall 2015 9/15/15

Optimized Simple Case
A leaf needing minimal resources:

int isOdd(int x) {	
 return (x & 1);	
}	

A function that calls others and
 has local variables:

int parity(a,b,c,d) {	
 int sum = a + b + c + d;	
 return isOdd(sum);	
}	

 Optimized assembly code:

isOdd: andi $2,$4,1	
L_1: jr $31	

parity: addiu $sp,$sp,-32	
 sw $31,20($sp)	
 addu $24,$4,$5	
 addu $24,$24,$6	
 addu $4,$24,$7	
 sw $4,-4+32($sp)	
 jal isOdd	
L_2: lw $31,20($sp)	
 addiu $sp,$sp,32	
 jr $31 	

Address Contents

$sp+44 $a3

$sp+40 $a2

$sp+36 $a1

$sp+32 $a0

$sp+28 “sum”

$sp+24 **unused**

$sp+20 $ra

$sp+16 **unused**

$sp+12 $a3

$sp+8 $a2

$sp+4 $a1

$sp ! $a0

Callee doesn’t
 save its
 arguments
 because, they are
 not referenced
 again after the
 call to
 isOdd(sum). But
 it still needs to
 allocate space
 for local variables
 (i.e. sum), the
 return address,
 and any
 arguments that
 callees might
 need storage for.

L07 – Stacks and Procedures 25 Comp 411 – Fall 2015 9/15/15

Back to our Recursive Example
Now let’s make our example work, using the MIPS procedure

 linking and stack conventions.
int sqr(int x) {
 if (x > 1)
 x = sqr(x-1)+x+x-1;
 return x;
}

main()
{
 sqr(10);
}

ALLOCATE stack
 frame. With room
for the return
address, a local
 saved register,
 and the argument
 spill for calls.

 Save
 registers
 that must
 survive
 the call.

Pass arguments

DEALLOCATE
stack frame.

A: Stack frame size within
a call remains constant,
so the compiler makes all
accesses relative to $sp.

Q: Why isn’t the $fp
 being used?

Restore
saved registers.

sqr: addiu $sp,$sp,-32
 sw $ra,20($sp)
 sw $s0,24($sp)
 move $s0,$a0
 addiu $t8,$0,1
 slt $1,$t8,$s0
 beq $1,$0,endif
 addiu $a0,$s0,-1
 jal sqr
 addu $v0,$v0,$s0
 addu $v0,$v0,$s0
 addiu $v0,$v0,-1
 b rtn
endif: move $v0,$s0
rtn: lw $s0,24($sp)
 lw $ra,20($sp)
 addiu $sp,$sp,32
 jr $ra

Address Contents

$sp+44 $a3

$sp+40 $a2

$sp+36 $a1

$sp+32 $a0 = x

$sp+28 **unused**

$sp+24 $s0

$sp+20 $ra

$sp+16 $fp

$sp+12 $a3

$sp+8 $a2

$sp+4 $a1

$sp ! $a0

L07 – Stacks and Procedures 26 Comp 411 – Fall 2015 9/15/15

Testing Reality’s Boundaries
Now let’s take a look at the active stack frames at some

 point during the procedure’s execution.

$s0 = ???
$ra = 0x80000034

…

$s0 = 1010

$ra = 0x80000068
…

$s0 = 910

$ra = 0x8000068
…

PC

Return Address to
 original caller

$sp

sqr: addiu $sp,$sp,-32
 sw $ra,20($sp)
 sw $s0,24($sp)
 move $s0,$a0
 addiu $t8,$0,1
 slt $1,$t8,$s0
 beq $1,$0,endif
 addiu $a0,$s0,-1
 jal sqr
 addu $v0,$v0,$s0
 addu $v0,$v0,$s0
 addiu $v0,$v0,-1
 b rtn
endif: move $v0,$s0
rtn: lw $s0,24($sp)
 lw $ra,20($sp)
 addiu $sp,$sp,32
 jr $ra

L07 – Stacks and Procedures 27 Comp 411 – Fall 2015 9/15/15

Procedure Linkage is Nontrivial
The details can be overwhelming.

What’s the solution for managing this complexity?

 We have another problem, there are great many CHOICEs
 that we can make in realizing a procedure (which
 variables are saved, who saves them, etc.), yet we will
 want to design SOFTWARE SYSTEM COMPONENTS that
 interoperate. How did we enable composition in that
 case?

Abstraction!

Contracts!

• High-level languages can provide compact
 notation that hides the details.

•  But, first we must agree on the details?
 Not just the HOWs, but WHENs.

L07 – Stacks and Procedures 28 Comp 411 – Fall 2015 9/15/15

Procedure Linkage: Caller Contract

The CALLER will:
•  Save any temp registers that it needs
after calls in its stack frame
 (t0-$t9, $a0-$a3, $v0-$v1, and $ra)

•  Pass the first 4 arguments in registers
$a0-$a3, and save subsequent arguments on
 stack, in *reversed* order.

• Call procedure, using a jal instruction
 (places return address in $ra).

•  Access procedure’s return values in $v0-$v1

L07 – Stacks and Procedures 29 Comp 411 – Fall 2015 9/15/15

Code Lawyer
Our running example is a CALLER. Let’s make sure it obeys
 its contractual obligations

int sqr(int x) {
 if (x > 1)
 x = sqr(x-1)+x+x-1;
 return x;
}

sqr: addiu $sp,$sp,-32
 sw $ra,20($sp)
 sw $s0,24($sp)
 move $s0,$a0
 addiu $t8,$0,1
 slt $1,$t8,$s0
 beq $1,$0,endif
 addiu $a0,$s0,-1
 jal sqr
 addu $v0,$v0,$s0
 addu $v0,$v0,$s0
 addiu $v0,$v0,-1
 b rtn
endif: move $v0,$s0
rtn: lw $s0,24($sp)
 lw $ra,20($sp)
 addiu $sp,$sp,32
 jr $ra

L07 – Stacks and Procedures 30 Comp 411 – Fall 2015 9/15/15

Procedure Linkage: Callee Contract

If needed the CALLEE will:
 1) Allocate a stack frame including space for local

 variables, any saved registers it uses, and room
 for the saving arguments of procedures it calls

 2) Save any “preserved” registers it uses:
 ($ra, $sp, $fp, $gp, $s0-$s7)

 3) If CALLEE has local variables -or- needs access to
 arguments on the stack, save the CALLER’s frame

 pointer and set $fp to 1st entry of the CALLEE’s stack

 4) EXECUTE procedure
 5) Place return value in $v0
 6) Restore any registers saved in step 2
 7) Deallocate space on stack (add to $sp)
 8) Return to CALLER with jr $ra

A leaf function
 might not need
 to do anything
 for steps 1, 2, 3,
 and 6.

L07 – Stacks and Procedures 31 Comp 411 – Fall 2015 9/15/15

More Legalese
Our running example is also a CALLEE. Are these
 contractual obligations satisfied?

int sqr(int x) {
 if (x > 1)
 x = sqr(x-1)+x+x-1;
 return x;
}

sqr: addiu $sp,$sp,-32
 sw $ra,20($sp)
 sw $s0,24($sp)
 move $s0,$a0
 addiu $t8,$0,1
 slt $1,$t8,$s0
 beq $1,$0,endif
 addiu $a0,$s0,-1
 jal sqr
 addu $v0,$v0,$s0
 addu $v0,$v0,$s0
 addiu $v0,$v0,-1
 b rtn
endif: move $v0,$s0
rtn: lw $s0,24($sp)
 lw $ra,20($sp)
 addiu $sp,$sp,32
 jr $ra

