Addressing Modes
Dand Other ISAs

* Where is the data?
* Addresses as data
* Names and Yalues

* [ndirection

Comp 411 - Fall 2015 9/1115 L5 — Addressing Modes 1

Assembly Exercise

* Let's write some assembly language programs

* Program #1: Write a function “isodd(int X)” which returns
1if it’s argument “X” is odd and O otherwise

main: addiu $a0,%$0,37 The addiu instruction is
jal 1sodd used to load constants
addiu $a0,3$0,42 (i.e. is0dd(37)), can this
h] jal 1sodd be done in other ways?
alt: beq $0,%0,halt

A
2
isodd: andi $v@,$a0,1 N
jr $31 The function is

implemented using only
one instruction. How does
“andi $Y,$X,1” determine
that $X is odd?

Comp 411 - Fall 2015 9/1115 L5 — Addressing Modes 2

Your Turn

 Program #2: A function “ones(int X)” that returns a
count of the number of ones in its argument “X”

Comp 411 - Fall 2015 9/1115 L5 — Addressing Modes 3

The MIPS ISA

32-bit (4-byte) ADD instruction:

000000/0010000010/0001100000{100000
op = R-type Rs Rt Rd func = add

Means, to MIPS, Reg[3] = Reg[4] + Reg[2]

But, most of us would prefer to write

add $3, $4, $2 (ASSEMBLER)

or, better yet,
a=>b + c; (C)

Comp 411 - Fall 2015 9/1115 L5 — Addressing Modes 4

Journey of a One-Address Machine

* Once, 1974, there was an heroic effort to build a single
-chip computer on a budget of 3500 devices, by a Silicon
Valley startup called Intel, that could sell for < $200.

* It had one primary &-bit register, A, for accumulator, and
© other &-bit registers, B, C, D, E, H, and L with more i

of the previous
accumulator operation.

limited and special functions. Certain register pairs rrume i

a carry out of the MSB?

could be linked to act as 16-bit registers, BC, DE, and \
HL, mostly for addressing

65536 bytes of memory. A (accu:mator) F'igg X
e [t had one other register, 5 .

SP, which was always y]

16-bits and was used to =P

implement a stack.

Comp 411 - Fall 2015 9/1115 L5 — Addressing Modes 5

Journey of a One-Address Machine

* Typical instructions
A€ A+s whered, s one of {A,B,C,D,E,H,LLMem[HL]}

ADD s
SUB s
ANA s
ORA s
XRA s
CMP s
INR d
DCR d

AEA-5
AEA&s /‘/

A€ Als 12
AECA”s

A -5 Note: Sets
flags only

d€&d+1
d&d-1

* A really cool one:

MOV d, s

Comp 411 - Fall 2015

d € s

Notice how most instructions include only one
operand d or s. This is possible, because the other
operand and the destination are implicit. They are
either both the accumulator, A, or the operand
specifies both source and destination and the
other operand is a constant. Instructions with one
operand are called one-address machines.

A (accumulator) Flags
B C
D E
H L
SP

91115

L5 — Addressing Modes ©

Journey of a One-Address Machine

* Immediate Operands

ADl immg
SUlimmyg
ANl immg
ORIl imm,
XRl immg

CPl immg

A€ A+immg
A€ A-immg,
A€ A&immg
A€ Alimmg
A€ A”immg

A—immg

MVl d,immg d € imm,

* No operands

RAL
RAR
XCHG

Comp 411 - Fall 2015

a€a<<i
a€a>>1
HL €-> DE

* Register Pair Operands

INX p pEp+1
DCX p pEp-1
DAD p HL €< HL +p

LXI pimm,; p € imm,g
where p is one of {BC, DE, HL, or SP}

A (accumulator) Flags
B C
D E
H L
SP

9/1115 L5 — Addressing Modes 7

Journey of a One-Address Machine

 Fancy Memory Reference (recall s and d can be Mem[HL])
A € Mem[addr,;]
A = Mem[addr,;]

LDA addr,,
STA addr,g
LHLD addr,g
SHLD addr,g

LDAX p
STAX p
XTHL

in the following p is one of
{A | flags, BC, DE, or HL}

PUSH p

POP p

Comp 411 - Fall 2015

HL € Mem[addr,;]

HL = Mem[addr,;]

A € Mem[p] (p is one of {BC, DE})

A 2> Mem[p]

HL €-> Mem[SP]

A (accumulator) Flags
Mem[SP-1] € p.; ° ¢
Mem[SP-2] € p,; D £
H L

SP € SP -2
py € Mem[SP];

p. € Mem[SP+1];
SP € SP + 2

91115

SP

L5 — Addressing Modes &

Journey of a One-Address Machine

e Branch and control

JMP addr,, PC € Mem[addr,;]

JNZ addr, if Flags.Z = 0 PC € Mem[addr,;]
JZ addr,, if Flage.Z =1 PC € Mem[addr,;]
JNC addr,, if Flags.C =0 PC € Mem[addr,;]
JC addr,, if Flags.C =1 PC € Mem[addr,;]

CALL instructions behave similar to their corresponding JMP

/ instructions. However, they also do the following:
CALL addr,; N MEM[SP] € PC; 5P € 5P -2

CNZ addr 7
16 /h A (accumulator) Flags
CZ addr,,
CNC addr,g ° ¢
CC addr,, 0 £
H L
SP

Comp 411 - Fall 2015 9/1115 L5 — Addressing Modes 9

Growing to a Two-Address Machine

e [ntel's 8080 was a huge success, but it soon started to
exhibit growing pains that limited its usefulness in

comparison to minicomputers of the same era.
e Key Problems:

— &-bit registers were too small

— The maximum of addressable 65536 bytes was too limiting
e So it grew into the 6086, 16-bit architecture (1976)

AX: AH AL € '\
BX: BH BL <——{A (accumulator) Flags
CX: CH CL
€ ‘ B/—. C

DX: DH DL o D E

BP \. Sp

S|

DI

Comp 411 - Fall 2015

91115

L5 — Addressing Modes 10

Growing to a Two-Address Machine

o This change came with more innovations

— Assembly-language/mnemonic compatibility

— Making the AX, BX, CX, and DX more general purpose | am intentionally
(i.e. all could be used like accumulators) oreny metructions
like “AAA- Add with
e Similar, but different two-operand instructions: for aading digts
ADD d, 5 d€d+s o
SUB d, 5 d€d-s 1@
AND d, s d€dé&s
AX A AL OR d, s d€dls
BX: BH BL XOR d, s d&d*s
CX: CH CcL MOV d,s d €5
DX: DH DL s is {AX,.BX,CX,DX,imm,zsext(Immy),
Mem{[addr,;], Mem[Sl],
SP Mem[Sl+addr,;], Mem[BP+SI]}
BP d is {AX,BX,CX,DX, Mem[addr,],
Sl Mem[DlI], Mem[Dl+addr,;],
DI Mem[BP+DI]}

Comp 411 - Fall 2015

9/1115 L5 — Addressing Modes 11

Growing to a Two-Address Machine

* There was one more major addition

— 4 segment registers extend addresses to 20-bits (1046576 bytes)
— Technically, addresses are to any of 65536 bytes offset from a

16-byte aligned segment

Mem[X] = Mem[((segment register)<<4) + X] where the segment

register varies depending
on the “type” of access.
Memory accesses for instructions

AX: AR AL (involving the PC) use CS (code segment),
BX: BH BL for data use DS (data segment) or ES
CX: CH CL (extra segment), and for stack operations
DX: DH DL (involving SP) use S5 (stack segment)

SP CS

BP DS

Sl 55

DI ES

Comp 411 - Fall 2015

9/1115 L5 — Addressing Modes 12

More Growing Pains (x86)

* Once again the 6066, 6066, 60166, and 80266 machines
were immensely successful (IBM PC, Compag, Clones), and,
once again, they started to show limitations compared to a
hew class of machines called workstations.

e Intel introduced the i386 B -~ AR

and i4866 extensions EBX BH__ BX Bl

ECX CH C|X CL

— Registers expanded to 32-bits EDX PH DX DL
— Address space non-segmented, ESP sP
“flat” 4,294,967,296 bytes — -
* Segment registers £ o
— Not extended to 32-bits. Two new ones are added. Ez
— Segmented addressing is deemphasized aside 55
from backward compatibility ES

FS

— Take on more general-purpose roles as scaled
offsets (eg. Mem[Sl+(DS<<4)])

GS

Comp 411 - Fall 2015 9/1115 L5 — Addressing Modes 13

Success is so Painful!

e The i366 and i466 are once again successful, even amongst
simpler, faster, and cheaper RISC CPUs. Intel manages to
adapt again

¢ |n 1995 Intel introduces their

first pipelined version of the
x86 ISA (Pentium) adapting
many RISC concepts and

General Purpose Also: 6 segment registers, control, status, debug, more
Registers (GPRs) Address Space

RAX 2%64-1 Legacy x86 registers
| RBX Stack New x64 registers

| RCX l Instruction Pointer/Flags

| RBP I
| RSI RFLAGS

| RDI 63 [

Byte

Word

—. | Doubleword

were | Quadword

Double Quadword
e INCreasing ASOresses

adding a 'Few new ones. B ems 128-bit XMM Registers »

e Nonetheless, x66 starts to =movuse.. ows
(overlaid) S

feel growing pains again as e s

xme

Xm1e
X1l
xmi12

FPR3/MMX3

S2-bit architectures run out gisfos
of space for code and data - e

Xmis
mi4a
XMm1s

e Around 2005, Intel introduces a 64-bit Pe;{tium D, C;re 2,
Core i3, iD, and i7 archetectures

FPR7/MMX7

Comp 411 - Fall 2015 9/1115 L5 — Addressing Modes 14

Lessons Learned

e |nstruction Set Architectures would rather Evolve than
be Reinvented!

— While developing new CPU hardware is expensive, it pales in
comparison to developing software. Thus, maintaining

o _ope Fear not padawan, still
backward-compatibility has been one of Intel's secrets of | onec hope remains |

SUccess.

A
e Beauty does not equal Truth! Aﬁ

— Just because instructions are ugly does not mean that they
can't accomplish the task. Conversely, if a task gets done, no
one cares if it was done in an ugly or beautiful manner

* Birds in the hand are unlikely to become jet liners!

— It is always better to apply your cleverness to making existing
customers happier with what they've already done, than trying
to convince them they should start over doing it a better way.

Comp 411 - Fall 2015 9/1115 L5 — Addressing Modes 15

Revisiting 1,2, and 3 Operands

o Operands — the variables needed to perform an
instruction’s operation

* Two types in Intel's history
— One address: ADD C #AECA+C
— Two address: ADD CX,DX # CX € CX + DX

* Three types in the MIPS ISA:

— Three Address (Registers only!):

add $2, $3, $4 # operands are the “Contents” of a register
— Immediate:

addi $2,9$2,1 # 2" source operand is part of the instruction
— Register-Indirect:

w $2, 12($28) # source operand is in memory
sw $2, 12($28) # destination operand is memory

e Simple, but is it enough?

Comp 411 - Fall 2015 9/1115 L5 — Addressing Modes 16

Common "Addressing Modes”

MIPS can do these with appropriate

choices for Ra and const

* Absolute (Direct): Iw $8, 1000($0)
— Value = Mem[constant]
— Use: accessing static data
e |ndirect: lw $& 0($9)
— Value = Mem[Reg[x]]
— Use: pointer accesses
o Displacement: Iw $8,16($9)
— Value = Mem[Reg[x] + constant]

— Use: access to local variables

e Indexed:
— Value = Mem[Reg[x] + Reg[y]]

— Use: array accesses (base+index)

e Memory indirect:

— Value = Mem[Mem[Reg[x]]]

— Use: access thru pointer in mem
* Autoincrement:

— Value = Mem[Reg[x]]; Reg[x]++

— Use: sequential pointer accesses
e Autodecrement:

— Value = Reg[X]--; Mem[Reg[x]]

— Use: stack operations
o Scaled:

— Value = Mem[Reg[x] + ¢ + d*Reg[y]]

— Use: array accesses (base+index)

Argh! s the complexity worth the cost?
Need a cost/benefit analysis!

Comp 411 - Fall 2015

91115

L5 — Addressing Modes 17

Memory Operands: Usage

Memory indirect

Scaled

Register indirect

Immediate

Displacement

Usage of different memory operand modes

Comp 411 - Fall 2015

TeX
spice
gce

TeX
spice
gcc

TeX
spice
gce

TeX
spice
gcc

TeX
spice
gce

1%
6%
1%

0%

16%
6%

24%
3%

- BARA

17%

43%

I 39%

32%

I— 40

From Hennessy & Patterson

55%

0% 10% 20% 30%

Frequency of the addressing mode

© 2003 Elsevier Science (USA). All riahts reserved.

91115

60%

L5 — Addressing Modes 16

Real-World Addressing

¢ What we want:

— In general, the contents of a specific memory location

e How we get it? Let’s look at high-level constructs!

* Examples: “MIPS Assembly”
main: addiu $sp,$sp,-16 There’s “x:
“C” lw $24’x —./
. _ s sll $15,%524,2 “8 Here's the
int x = 5; . 1w $15,data($15) _ 8~ array access
int data[10]; sw $15,-4+16($sp) Where's v2
. ere’s y?
malnf) { addiu $24,$24,1 Ny '
int y; sw $24,x d
v = data[x]; move $2,$0
x=x+ 1; addiu $sp, $sp,16
} jr $31
X: .word 0x5
o Caveats data: .space 10

— In practice $gp is often used as a base address for all variables
— Can only address the first and last 32K of memory this way

— Sometimes generates a two instruction sequence:
lui $1,xhighbits
lw $2,xlowbits ($1)
Comp 411 - Fall 2015 9115 L5 — Addressing Modes 19

Next Time

e More about how “C”

— How and where does it allocate variables?

— How are common high-level constructs converted
to assembly language?

Comp 411 - Fall 2015

if) {}else{}:
for () {}
while () {}
do { } while ();

+=, ++, -=, &, &&
myfunc(argl, arg2)

91115

THE

PROGRAMMING
LANGUAGE

Brian W.Kernighan ® Dennis M.Ritchie

L5 — Addressing Modes 20

