
L5 – Addressing Modes   1 Comp 411 – Fall 2015 9/1/15 

Addressing Modes  
and Other ISAs 

•  Where is the data? 
•  Addresses as data 
•  Names and Values 
•  Indirection 



L5 – Addressing Modes   2 Comp 411 – Fall 2015 9/1/15 

Assembly Exercise 
•  Let’s write some assembly language programs 

•  Program #1: Write a function “isodd(int X)” which returns
 1 if it’s argument “X” is odd and 0 otherwise 

main:   addiu   $a0,$0,37	
        jal     isodd	
        addiu   $a0,$0,42	
        jal     isodd	
halt:   beq     $0,$0,halt	

isodd:  andi    $v0,$a0,1	
        jr      $31	

The addiu instruction is
 used to load constants
 (i.e. isodd(37)), can this
 be done in other ways? 

The function is
 implemented using only
 one instruction. How does
 “andi $Y,$X,1” determine
 that $X is odd? 



L5 – Addressing Modes   3 Comp 411 – Fall 2015 9/1/15 

main:   addiu   $a0,$0,-1	
        jal     ones	
*       addiu   $a0,$0,32	
        jal     ones	
*halt:  beq     $0,$0,halt	

ones:   addu    $v0,$0,$0       # count = 0	
        beq     $a0,$0,endw     # while (x != 0) {	
loop:   andi    $t0,$a0,1       #   t = x & 1	
        addu    $v0,$v0,$t0     #   count += t	
        srl     $a0,$a0,1       #   x = x >> 1	
        bne     $a0,$0,loop     # } 	
endw:   jr      $31             # return count	

Your Turn 

•  Program #2: A function “ones(int X)” that returns a
 count of the number of ones in its argument “X” 



L5 – Addressing Modes   4 Comp 411 – Fall 2015 9/1/15 

The MIPS ISA 

Means, to MIPS,    Reg[3]  =  Reg[4] + Reg[2] 

op = R-type Rd Rt 

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 
Rs 

0 0 0 1 0 0 0 0 0 0 0 

32-bit (4-byte) ADD instruction: 

But, most of us would prefer to write 

a = b + c; 

add $3, $4, $2 
or, better yet, 

(ASSEMBLER) 

(C) 

0 
func = add 



L5 – Addressing Modes   5 Comp 411 – Fall 2015 9/1/15 

Journey of a One-Address Machine 
•  Once, 1974, there was an heroic effort to build a single

-chip computer on a budget of 3500 devices, by a Silicon
 Valley startup called Intel, that could sell for < $200. 

•  It had one primary 8-bit register, A, for accumulator, and
 6 other 8-bit registers, B, C, D, E, H, and L with more
 limited and special functions. Certain register pairs
 could be linked to act as 16-bit registers, BC, DE, and
 HL, mostly for addressing 
 65536 bytes of memory. 

•  It had one other register, 
SP, which was always  
16-bits and was used to 
implement a stack. 

A (accumulator) 

B C 

D E 

H L 

SP 

Flags 

The FLAG register
 tracks  ancillary results
 of the previous
 accumulator operation.
 For example, was there
 a carry out of the MSB?
 is the result zero? is it
 negative?  



L5 – Addressing Modes   6 Comp 411 – Fall 2015 9/1/15 

Journey of a One-Address Machine 
•  Typical instructions 

ADD s  A ! A + s      where d, s one of {A,B,C,D,E,H,L,Mem[HL]} 
SUB s  A ! A – s 
ANA s  A ! A & s 
ORA s  A ! A | s 
XRA s  A ! A ^ s 
CMP s  A – s 
INR  d  d ! d + 1 
DCR d  d ! d – 1 

•  A really cool one: 
MOV d, s  d ! s 

A (accumulator) 

B C 

D E 

H L 

SP 

Notice how most instructions include only one
 operand d or s. This is possible, because the other
 operand and the destination are implicit. They are
 either both the accumulator, A, or the operand
 specifies both source and destination and the
 other operand is a constant. Instructions with one
 operand are called one-address machines.  

Flags 

Note: Sets  
flags only 



L5 – Addressing Modes   7 Comp 411 – Fall 2015 9/1/15 

Journey of a One-Address Machine 
•  Immediate Operands 

ADI imm8  A ! A + imm8 
SUI imm8  A ! A – imm8 
ANI imm8  A ! A & imm8 
ORI imm8  A ! A | imm8 
XRI imm8  A ! A ^ imm8 

CPI imm8  A – imm8 

MVI d,imm8  d ! imm8 

•  No operands 
RAL  a ! a << 1 
RAR  a ! a >> 1 
XCHG  HL !" DE 

A (accumulator) 

B C 

D E 

H L 

SP 

•  Register Pair Operands 
INX p  p ! p + 1 
DCX p  p ! p – 1 
DAD p  HL ! HL + p 
LXI p,imm16  p ! imm16 

where p is one of {BC, DE, HL, or SP} 

Flags 



L5 – Addressing Modes   8 Comp 411 – Fall 2015 9/1/15 

Journey of a One-Address Machine 
•  Fancy Memory Reference (recall s and d can be Mem[HL]) 

LDA addr16   A ! Mem[addr16] 
STA addr16   A " Mem[addr16] 
LHLD addr16  HL ! Mem[addr16] 
SHLD addr16  HL " Mem[addr16] 
LDAX p   A ! Mem[p]                 (p is one of {BC, DE}) 
STAX p   A " Mem[p] 
XTHL                            HL !" Mem[SP] 
in the following p is one of 
{A | flags, BC, DE, or HL} 
PUSH p   Mem[SP-1] ! pL; 

              Mem[SP-2] ! pH; 
                 SP ! SP – 2 

POP p  pH ! Mem[SP]; 
                      pL ! Mem[SP+1]; 

                  SP ! SP + 2 

A (accumulator) 

B C 

D E 

H L 

SP 

Flags 



L5 – Addressing Modes   9 Comp 411 – Fall 2015 9/1/15 

Journey of a One-Address Machine 
•  Branch and control 

JMP addr16   PC ! Mem[addr16] 
JNZ addr16   if Flags.Z = 0  PC ! Mem[addr16] 
JZ addr16   if Flags.Z = 1   PC ! Mem[addr16] 
JNC addr16   if Flags.C = 0   PC ! Mem[addr16] 
JC addr16   if Flags.C = 1   PC ! Mem[addr16] 

CALL addr16    
CNZ addr16    
CZ addr16    
CNC addr16    
CC addr16    

A (accumulator) 

B C 

D E 

H L 

SP 

Flags 

CALL instructions behave similar to their corresponding JMP
 instructions. However, they also do the following:   
              MEM[SP] ! PC; SP ! SP -2 



L5 – Addressing Modes   10 Comp 411 – Fall 2015 9/1/15 

Growing to a Two-Address Machine 
•  Intel’s 8080 was a huge success, but it soon started to

 exhibit growing pains that limited its usefulness in
 comparison to minicomputers of the same era.  

•  Key Problems: 
–  8-bit registers were too small 
–  The maximum of addressable 65536 bytes was too limiting 

•  So it grew into the 8086, 16-bit architecture (1978) 

A (accumulator) 

B C 

D E 

H L 

SP 

Flags 

AH AL 

BH BL 

CH CL 

DH DL 

AX: 

BX: 

CX: 

DX: 

SP 

BP 

SI 

DI 



L5 – Addressing Modes   11 Comp 411 – Fall 2015 9/1/15 

Growing to a Two-Address Machine 
•  This change came with more innovations 

–  Assembly-language/mnemonic compatibility 
–  Making the AX, BX, CX, and DX more general purpose  

(i.e. all could be used like accumulators) 

•  Similar, but different two-operand instructions: 
      ADD d, s  d ! d + s 
      SUB d, s  d !d – s 
      AND d, s  d !d & s 
      OR d, s   d ! d | s 
      XOR d, s  d ! d ^ s 
      MOV d,s  d !s 
      s is {AX,BX,CX,DX,imm16,sext(Imm8), 
                                                                 Mem[addr16], Mem[SI], 

          Mem[SI+addr16], Mem[BP+SI]} 
      d is {AX,BX,CX,DX, Mem[addr16], 
              Mem[DI], Mem[DI+addr16], 
               Mem[BP+DI]} 

AH AL 

BH BL 

CH CL 

DH DL 

AX: 

BX: 

CX: 

DX: 

SP 

BP 

SI 

DI 

I am intentionally
 ignoring lots of
 crazy instructions
 like “AAA- Add with
 an ASCII Adjust,”
 for adding digits
 encoded in ASCII 



L5 – Addressing Modes   12 Comp 411 – Fall 2015 9/1/15 

Growing to a Two-Address Machine 
•  There was one more major addition 

–  4 segment registers extend addresses to 20-bits (1048576 bytes) 
–  Technically, addresses are to any of 65536 bytes offset from a  

16-byte aligned segment 

Mem[X] = Mem[((segment register)<<4) + X]   where the segment
       register varies depending
       on the “type” of access. 

      Memory accesses for instructions
        (involving the PC) use CS (code segment), 

                                                      for data use DS (data segment) or ES
        (extra segment), and for stack operations 

                   (involving SP) use SS (stack segment)  

AH AL 

BH BL 

CH CL 

DH DL 

AX: 

BX: 

CX: 

DX: 

SP 

BP 

SI 

DI 

CS 

DS 

SS 

ES 



L5 – Addressing Modes   13 Comp 411 – Fall 2015 9/1/15 

More Growing Pains (x86) 
•  Once again the 8088, 8086, 80186, and 80286 machines

 were immensely successful (IBM PC, Compaq, Clones), and,
 once again, they started to show limitations compared to a
 new class of machines called workstations. 

•  Intel introduced the i386  
and i486 extensions 
–  Registers expanded to 32-bits 
–  Address space non-segmented, 

“flat”  4,294,967,296 bytes 

•  Segment registers 
–  Not extended to 32-bits. Two new ones are added. 
–  Segmented addressing is deemphasized aside 

from backward compatibility 
–  Take on more general-purpose roles as scaled 

offsets (eg. Mem[SI+(DS<<4)]) 

AH AL 

SP 

AX 

BH BL 

CH CL 

DH DL 

BP 
SI 
DI 

BX 

CX 

DX 

EAX 
EBX 
ECX 
EDX 
ESP 
EBP 
ESI 
EDI 

31                                                         16 15                          8 7                           0 

CS 
DS 
SS 
ES 
FS 
GS 



L5 – Addressing Modes   14 Comp 411 – Fall 2015 9/1/15 

Success is so Painful!  
•  The i386 and i486 are once again successful, even amongst

 simpler, faster, and cheaper RISC CPUs. Intel manages to
 adapt again 

•  In 1995 Intel introduces their  
first pipelined version of the  
x86 ISA (Pentium) adapting  
many RISC concepts and  
adding a few new ones. 

•  Nonetheless, x86 starts to 
feel growing pains again as 
32-bit architectures run out 
of space for code and data 

•  Around 2005, Intel introduces a 64-bit Pentium D, Core 2,
 Core i3, i5, and i7 archetectures 



L5 – Addressing Modes   15 Comp 411 – Fall 2015 9/1/15 

Lessons Learned 
•  Instruction Set Architectures would rather Evolve than

 be Reinvented! 
–  While developing new CPU hardware is expensive, it pales in

 comparison to developing software. Thus, maintaining
 backward-compatibility has been one of Intel’s secrets of
 success. 

•  Beauty does not equal Truth! 
–  Just because instructions are ugly does not mean that they

 can’t accomplish the task. Conversely, if a task gets done, no
 one cares if it was done in an ugly or beautiful manner 

•  Birds in the hand are unlikely to become jet liners! 
–  It is always better to apply your cleverness to making existing

 customers happier with what they’ve already done, than trying
 to convince them they should start over doing it a better way. 

Fear not padawan, still
 one hope remains 



L5 – Addressing Modes   16 Comp 411 – Fall 2015 9/1/15 

Revisiting 1,2, and 3 Operands 

•  Operands – the variables needed to perform an
 instruction’s operation 

•  Two types in Intel’s history 
–  One address:  ADD C            # A ! A + C 
–  Two address:  ADD CX,DX     # CX ! CX + DX 

•  Three types in the MIPS ISA: 
–  Three Address (Registers only!): 

add $2, $3, $4  # operands are the “Contents” of a register 

–  Immediate: 
addi $2,$2,1  # 2nd source operand is part of the instruction 

–  Register-Indirect: 
lw  $2, 12($28)  # source operand is in memory 
sw $2, 12($28)  # destination operand is memory 

•  Simple, but is it enough? 



L5 – Addressing Modes   17 Comp 411 – Fall 2015 9/1/15 

MIPS can do these with appropriate
 choices for Ra and const 

        lw $8, 1000($0) 

lw $8 0($9) 

lw $8, 16($9) 

Common “Addressing Modes” 

•  Absolute (Direct): 
–  Value = Mem[constant] 
–  Use: accessing static data 

•  Indirect:  
–  Value = Mem[Reg[x]] 
–  Use: pointer accesses 

•  Displacement:  
–  Value = Mem[Reg[x] + constant] 
–  Use: access to local variables 

•  Indexed: 
–  Value = Mem[Reg[x] + Reg[y]] 
–  Use: array accesses (base+index) 

•  Memory indirect: 
–  Value = Mem[Mem[Reg[x]]] 
–  Use: access thru pointer in mem 

•  Autoincrement: 
–  Value = Mem[Reg[x]]; Reg[x]++ 
–  Use: sequential pointer accesses 

•  Autodecrement: 
–  Value = Reg[X]--; Mem[Reg[x]] 
–  Use: stack operations 

•  Scaled: 
–  Value = Mem[Reg[x] + c + d*Reg[y]] 
–  Use: array accesses (base+index) 

Argh!   Is the complexity worth the cost? 
Need a cost/benefit analysis! 



L5 – Addressing Modes   18 Comp 411 – Fall 2015 9/1/15 

Memory Operands: Usage 

Usage of different memory operand modes 

Fr
om

 H
en

ne
ss

y 
& 

Pa
tt

er
so

n 



L5 – Addressing Modes   19 Comp 411 – Fall 2015 9/1/15 

Real-World Addressing 
•  What we want: 

–  In general, the contents of a specific memory location 

•  How we get it? Let’s look at high-level constructs! 
•  Examples: 

•  Caveats 
–  In practice $gp is often used as a base address for all variables 
–  Can only address the first and last 32K of memory this way 
–  Sometimes generates a two instruction sequence: 

“C” 
int x = 5; 
int data[10]; 
main() { 
    int y; 
    v = data[x]; 
    x = x + 1; 
} 

“MIPS Assembly” 
main: addiu $sp,$sp,-16  
      lw $24,x  
      sll $15,$24,2  
      lw $15,data($15)  
      sw $15,-4+16($sp)  
      addiu $24,$24,1 
      sw $24,x  
      move $2,$0  
      addiu $sp,$sp,16  
      jr $31 
x:    .word 0x5 
data: .space 10  

lui  $1,xhighbits 
lw   $2,xlowbits($1) 

There’s “x: 

Here’s the
 array access 

Where’s y? 



L5 – Addressing Modes   20 Comp 411 – Fall 2015 9/1/15 

Next Time 
•  More about how “C” 

–  How and where does it allocate variables? 
–  How are common high-level constructs converted  

to assembly language? 
•  if () { } else{ }; 
•  for (;;) { } 
•  while () { } 
•  do { } while (); 
•  +=, ++, -=, &, && 
•  myfunc(arg1, arg2) 


