BCB 716 - Sequence Analysis

- Problem Set #1 should go out tonight
- Your course logins should work now
- Password is your PID

A look at DNA Alignments

From last time

- Aligners generate SAM files
 - An attempt is made to find the closest match for a given read, or read-pair to a reference
 - Alignments are performed independently and in parallel
 - SAM files include
 - the original sequence and quality string from the FASTQ file
 - Initially read pairs are considered together
 - Alignment tolerances
 - Opposite strands
 - Must satisfy a maximum gap distance
 - A placement of the first base that is "normalized" to reference orientation
 - An alignment represented as a CIGAR string
 - Various alignment scores (edit distances, etc.)

- SAM files are a lot to interpret

- Statistic provide a rough idea
- Localized analysis provides more insights

SAM to BAM

- SAM files tend to be large and difficult to index and manipulate
- Converted into Binary Alignment Maps (BAM files)
- This is done using a toolset called SAMtools
- First to convert a SAM file to a BAM file

```
$ samtools view -S -b CC053.sam -o CC053.bam
$ ls -l CC053.*
-rw-rw-r-- 1 mcmillan its_faculty_psx 5.1G Nov 8 14:57 CC053.bam
-rw-rw-r-- 1 mcmillan its_faculty_psx 24G Nov 8 14:22 CC053.sam
```

• BAM files are smaller, and not simply text, making them easier to search

\$ samtools view CC053.bam | head -1 A00434:231:H2K7FDSX2:1:1101:10529:1157 42 99 14 55067154 100M 55067503 449 = GGCTGGAGATGGGGCTGGAGAAGGCGGCTGATCAGGGCTTTCTGAGGGCTCCCTGGAGCCCTCGACTGGCGCCAGGGAAGG CTCAAGAGGAGGATCTGGG XG:i:0 NM:i:1 MD:Z:77G22 YS:i:-4 YT:Z:CP

Sorted and Indexed BAMs

- The reads in a BAM file are roughly in the order they can out of the sequencer
- SAM tools provides a tool to sort the reads genomically

```
$ samtools sort CC053.bam -o CC053.sorted.bam
$ ls -l CC053.*
-rw-rw-r-- 1 mcmillan its_faculty_psx 5.1G Nov 8 14:57 CC053.bam
-rw-rw-r-- 1 mcmillan its_faculty_psx 24G Nov 8 14:22 CC053.sam
-rw-rw-r-- 1 mcmillan its_faculty_psx 3.0G Nov 8 15:11 CC053.sorted.bam
```

- BAM files are even smaller, nearby sequences overlap and compress better
- Last of all we build an index so that the BAM file is easier to search/load

```
$ samtools index CC053.sorted.bam
$ ls -l CC053.*
-rw-rw-r-- 1 mcmillan its_faculty_psx 5.1G Nov 8 14:57 CC053.bam
-rw-rw-r-- 1 mcmillan its_faculty_psx 24G Nov 8 14:22 CC053.sam
-rw-rw-r-- 1 mcmillan its_faculty_psx 3.0G Nov 8 15:11 CC053.sorted.bam
-rw-rw-r-- 1 mcmillan its_faculty_psx 3.0M Nov 8 15:18 CC053.sorted.bam.bai
```

Exercise

Go to the following website:

https://ondemand.rc.unc.edu

You will need to authenticate with your ONYEN

Welcome to OnDemand, a Data Science platform and portal to Longleaf

March 2020 — Open OnDemanu De	ET/	A
-------------------------------	-----	---

OnDemand provides a web-based interface to the Longleaf compute cluster with interactive apps such as Jupyter Notebooks, R Studio, Matlab, Stata, and more. These interactive apps allow you to work directly with your files on ITS-RC systems such as your home directory and /proj.

Note about interactive apps:

Wait here for a few seconds

Eventually you'll get here

Now type a few commands at the command line

• Install an initial set of bioinformatic modules:

```
$ cp /proj/mcmillanlab/BCB716F21/loadModules .
$ cat loadModules
$ module list
```

```
Currently Loaded Modules:
1) samtools/1.9 3) bowtie2/2.4.1 5) minimap2/2.17
2) bwa-mem2/2.2.1 4) igv/2.8.7
```

• Today we'll discuss IGV

Integrative Genomics Viewer (IGV)

- I typed:
 - \$ igv & # starts the viewer as a background process
- After some machinations, and maximizing

	Discretion Places	Sys	tem		3																								Tue	Nov 9	, 09:5	52
	0												10	σV																0	» (×	0
	File Constant Human (hg38)	Tra	All	Region	is Too	ols He	elp	-							Go	Ê	4	Þ	4		×		I				-		i.		+	
d to are ct			1	1	2	1	3	1	4	1	5	6	1	7	8	1	9	10	1	11	12	13	14	15	16	17	18 ¹ '	9 20 ²	1 22	x	Y	•
hg38)																																Î
																																•
	Gene		.	Luni		بالعلق					. 30	سال		ملعد	L.u.,			مليا	a,	L.	L		د از	a jir	ريل	ш	h	Lat.	i hu	الد ورا		*
	Mate Termin	nal																										and here	4	03M of	3,113	-
	🔯 🛛 🖪 Mate Terminal			100	ЗV														1													

First, you'll need to make sure you are using the correct genome.

I'll use Human (hg38)

Visualizing BAM files

- The Interactive Genome Viewer (IGV) is a standard tool for visualizing sorted BAM files with index files
- You won't see any reads until you get to a window smaller than 30 kb (configurable, but)
- Coverage above
- Alignments below

Visualizing BAM files

- The reads are labelled with variants and INDELS that differ from the reference
- Red reads are separated from mates by a larger gap than expected

A Genome Model for a Population

Srivastava, Anuj, et al. "Genomes of the mouse collaborative cross." Genetics 206.2 (2017): 537-556.

- The Collaborative Cross (CC) mouse genetic reference population that is widely used to study complex traits
- Each genome is a mosaic of 8 inbred founder Comp 75train\$021

Lilue, Jingtao, et al. "Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci." *Nature genetics* 50.11 (2018): 1574.

Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci

Jingtao Lilue^{®1222}, Anthony G. Doran¹²²², Ian T. Fiddes³²², Monica Abrudan², Joel Armstrong³, Ruth Bennett¹, William Chow², Joanna Collins², Stephan Collins⁴⁵, Anne Czechanski⁶, Petr Danecek², Mark Diekhans^{®3}, Dirk-Dominik Dolle², Matt Dunn², Richard Durbin², Dent Earl³, Anne Ferguson-Smith⁷, Paul Flicek^{®12}, Jonathan Flint⁴, Adam Frankish¹², Beiyuan Fu², Mark Gerstein^{®7}, James Gilbert², Leo Goodstadt¹⁰, Jennifer Harrow³, Kerstin Howe⁴, Ximena Ibarra-Soria², Mikhail Kolmogorov^{®1}, Chris J. Lelliott⁸², Darren W. Logan^{®2}, Jane Loveland¹², Clayton E. Mathews¹², Richard Mott⁸⁹, Paul Muir⁹, Stefanie Nachtweide¹⁴, Fabio C. P. Navarro^{®7}, Duncan T. Odom^{®15,6}, NaomiPark², Sarah Pelan², Son K. Pham⁷, Mike Qual¹, Laura Reinholdt⁴, Lars Romch¹⁴, Lesley Shirley², Cristina Sisu³⁸, Marcela Sjoberg-Herrera^{®7}, Mario Stanke¹⁴, Charles Steward², Mark Thomas², Glen Threadgold², David Thybert¹⁶¹⁰⁰, James Torrance², Kim Wong^{®2}, Jonathan Wood⁹, Binaz Yalcin^{®4}, Fengtang Yang^{®2}, DavidJ. Adams²²², Benedict Paten²³ and Thomas M. Keane^{§12,212*}

- Mouse reference genome GRCm38 is based on C57BL/6J strain
- Genomes of the other 7 founder strains were recently released

Input:

Genome assemblies of the 8 founder strains (Lilue, Jingtao, et al. 2018)

75 CC sequenced samples using 30x Illumina short-reads (Srivastava et al., 2017, Shorter et al. 2019)

Output:

A directed series-parallel graph with "*anchor*" **nodes** containing unique sequences present in every sample from the population, and **edges** representing haplotype diversity.

Functional Regions and Comparative Analysis

CC Recombination within Genes and Exons

- Multiple CC strains have recombinations in a gene
- There are double recombinations in genes

Comp 716 - Fall 2021

Advantages of a Strain-Specific Genome

Align CC010 MRCA sequence data to GRCm38 and CC010 linear genome respectively

																Ш		Ш			
2																	_				
																				uuu	Ш
(0.0 10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0	110.0	120.0	130.0	140.0	150.0	160.0		70.0	180.0	190.0	200.0

Aligned to reference GRCm38: Chr2:160.03Mb

Advantages of a Strain-Specific Genome

Align CC010 MRCA sequence data to GRCm38 and CC010 linear genome respectively

2																				
2	.0 10	.0 2	0.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0	110.0	120.0	130.0	140.0	150.0	160.0	 0 180.0	190.0	200.0

Align to CC010 genome: Chr2:164.95Mb

<u>and</u>

- MRCAs will be used to estimate allele frequencies in the segregating regions
- On 11:112M-114.5M (GRCm38) CC019 is segregating between A/J and WSB/EiJ

Private (de novo) CC Mutations

Comp 716 - Fall 2021

Private (de novo) CC Mutations

CC019 has a ~6800 base TE insertion at chr17:45,010,174, on a WSB/EiJ background We now have a catalog of over 10,000 non-reference SVs (Kashfeen's IMGC talk)

Structural Variants

Recombination Boundary

chr8: 15.4Mb (GRCm38), Transition from G to F

A08.00342765 - A08.00344047, 54.7kb long gap

Recombination Boundary

Visualizing, Interpreting, and Analyzing Alignment outputs

