BCB 716 - Sequence Analysis

Jumping into Genomes

Logistics

• Course Website:

https://csbio.unc.edu/mcmillan/index.py?run=Courses.BCB716F22

Or just follow the links from https://csbio.unc.edu/mcmillan

[Courses | BCB 716 | Fall 2022] (and bookmark it)

- Look there for announcements and zoom links.
- Include "BCB716" in subject line of all emails
- Course grading:
 - 3 Problem Sets
 - Final

- 60 %
- 40 %

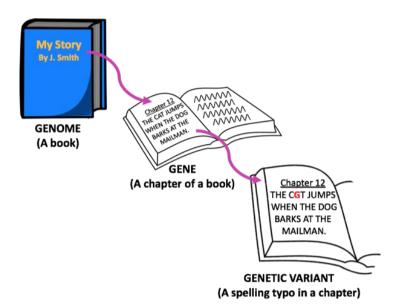
A Quick Exercise

https://forms.gle/T5NTS34FcXTFwtKV8

• You will need a UNC longleaf account

https://its.unc.edu/research-computing/request-a-cluster-account/

Request on in my name if you must mcmillan@cs.unc.edu



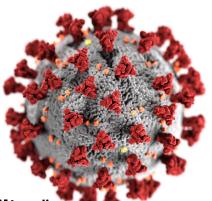
Comp 716 - Fall 2021

What is a Genome?

- An organism's complete set of genetic instructions
- Genomes are inherited
- Genomes evolve
- Genomes define and distinguish between organisms
 - Within a species
 - Between species

An RNA Genome

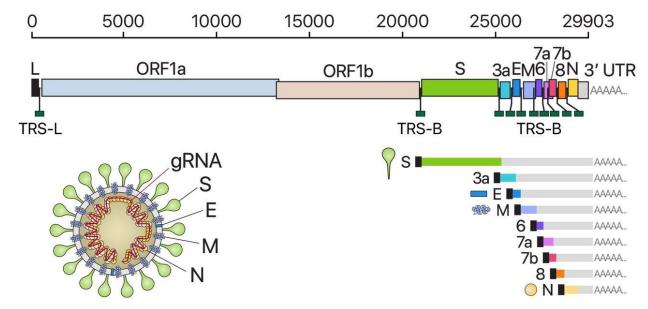
Viral genomes are some of the smallest


• Sequence is encoded in a single molecular sequence that folds and bonds to itself for stability

Characteristics of Viral genomes:

- Small, dense, and tricky
- Viral genomes code for functional proteins in order to "live", but rely on a host's machinery to perform essential functions
- Small genomes (3K 30K bases) with a few "key" genes

SARS-CoV-2, the virus that causes COVID-19


- 29903 bases of the original Wuhan isolate
- 10 (11?) genes, 4 structural, 2 with primary functions

An RNA Genome

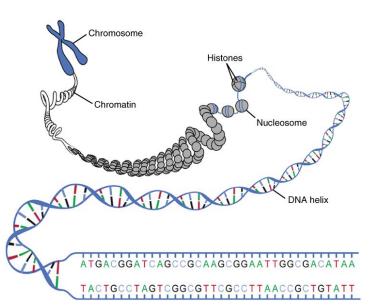
SARS-CoV-2, the virus that causes COVID-19

- 29903 bases of the original Wuhan isolate
- 10 (11?) genes, 4 structural, 2 with primary functions

Comp 716 - Fall 2021

COVID-19 FASTA file

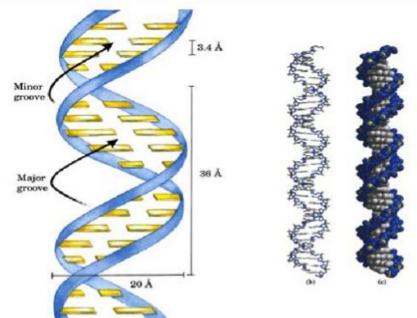
>NC_045512.2 |Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome


Skip 490 lines

This file is FASTA formatted. FASTA is the standard format used for genomes and sequences in general. A FASTA file is composed of one or more sequences, each with a header that starts a '>' followed by lines of nucleotides that when concatenated form the sequence.

DNA Genomes

- Most living organisms have DNA based genomes
- DNA is a long polymer bonded to a second "complementary" sequence
- It therefore contains two sequences each composed of 4 nucleotides (Adenine, Cytosine, Guanine, Thymine)
- Each base binds with another specific base Thymine with Adenine and Cytosine with Guanine
- Nucleotide sequences on either strand can encode functions, sometimes in both directions.

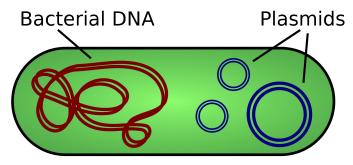


DNA Schematic

- Many more details are required to give a complete picture of DNA
 - Complementary strands are antiparallel and, thus, oriented
 - Not a simple twist, but DNA has a major and minor grooves which are recognized by interacting with proteins
- Rather than keep track of all the details we will often consider DNA as a string of nucleotides

5'...ACGGATAGCATGGA...3'

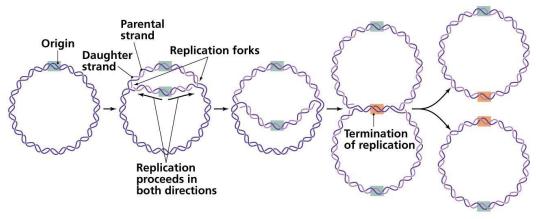
• By convention DNA sequences are always ordered in the 5'-to-3' direction. Not coincidentally, this is also the order in which they are synthesized using an important class of molecules call polymerases.



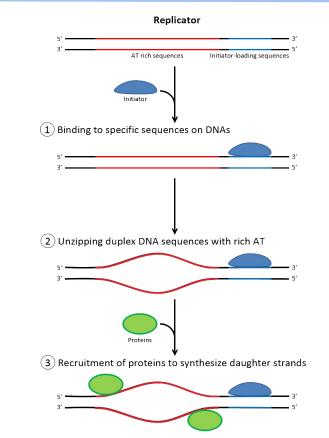
E. Coli Genome

Escherichia Coli, or E. Coli for short, is a common model organism and an example of a simple prokaryotic bacterial genome composed of 5.3 Mbp.

Characteristics of Bacterial DNA


- A "circular" primary chromosome (a few million bases) with essential genes
- Smaller chromosomes or circular plasmids (10-100K bases) with a few additional genes
- There can be multiple plasmid sequences with variable numbers of copies

Life \equiv Reproduction \equiv Replicating a Genome

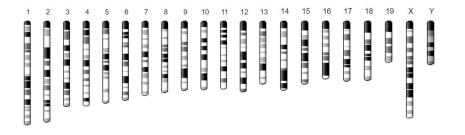

One of the most incredible things about DNA is that it provides instructions for replicating itself.

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Biological Insights

- Replication is performed by a DNA polymerase, and the initiation of replication is mediated by a protein called *DnaA*.
- DnaA binds to short (≈ 9 nucleotides long) segments within the replication origin known as a DnaA box (≈ 500 bases).
- A DnaA box is a signal telling DnaA to "bind here!"
- DnaA can bind to either strand. Thus, both the DnaA box and its reverse-complement are equal targets.
- By convention the first base in a bacterial DNA sequence begins with the *DnaA* gene

E. Coli Genome Sequence



>CP003289.1 Escherichia coli 0104:H4 str. 2011C-3493, complete genome CATTATCGACTTTGTTCGAGTGGAGTCCGCCGTGTCACTTTCGCTTTGGCAGCAGTGTCTTGCCCGATTGCAGGATGAG TTACCAGCCACAGAATTCAGTATGTGGATACGCCCATTGCAGGCGGAACTGAGCGATAACACGCTGGCCCTGTACGCGCC AAACCGTTTTGTCCTCGATTGGGTACGGGACAAGTACCTTAATAATATCAATGGACTGCTAACCAGTTTCTGCGGAGCGG ATGCCCCACAGCTGCGTTTTGAAGTCGGCACCAAACCGGTGACGCAAACGCCACAAGCGGCAGTGACGAGCAACGTCGCG Skipped 65910 lines

>CP003291.1 Escherichia coli 0104:H4 str. 2011C-3493 plasmid pAA-EA11, complete sequence GCCTCGCAAAACATTGCTCTATTCATGCACCACTCTATGTTCTCTATTTTCTTACAGAATAAAGAGGCCAGTTTCCAGAG CTCAAAAGCAAGAGCAAGATCCATATTCTTCTGCAGAAGCTGCTTGTTTCGACAAGGAATGAAAATTCTTTCCAGCCT TCATCAATACCTCCCAATACAATGTTCTCTTTTCTGAAATTTATAACATGATAAGATAATCGGAAGGATAGAATAATGACA CAATGGAGATATTCAAATAGGGGCCAGAACGCTGCTGCACCAGAAAAACCCGGAATTAAGAGATTATGGAAAAGGACTTA Skipped 924 lines

Laboratory mouse genome

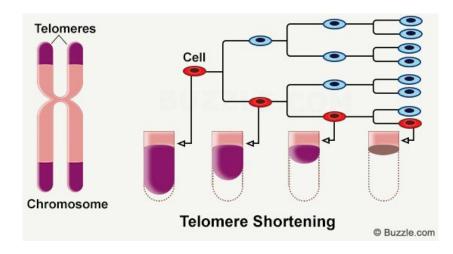
- A mammalian genome with 21 nuclear chromosomes
- 2.728 Billion base pairs
- Chromosome 1 is the largest with 195 Mbp
- Chromosome 19 is the smallest with 61 Mbp
- Genome was sequenced concurrently with the human Genome and the 1st draft was finished about the same time
- It is a genome of a single common "isogenic" mouse strain C57BL/6J
- It is commonly used as a *reference* genome for all other mouse strains and wild mice.
- A "sample-based" reference

What is a reference genome?

- A representative sequence that models the gene organization of a species
- FASTA files downloadable from the Genome Reference Consortium
- It is the basis for calling genomic variants
- Sequence differences that distinguish
 - Individuals
 - Subspecies
 - Used as a "scaffold" for modeling other species
- Types of variants
 - Single base changes or Single Nucleotide Polymorphisms (SNPs)
 - Short inserts or deletions (INDELS)
 - Variable length simple repeat patterns (microsatellites)
 - Structural variations (Larger insertions, deletions, Inversions, translocations)

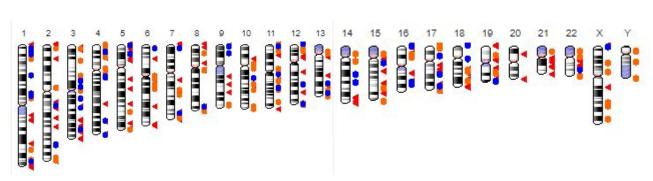
Greenome Reference Consortium											
	GRC Home	Data	Help	Report an Issue	Contact Us	Credits	Curators Only				
	Human Mous	e Zebrafish	Rat Chicken	í I	6 S	8					
			1.1.1								

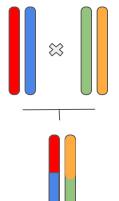
The Genome Reference Consortium


Putting sequences into a chromosome context

The original model for representing the genome assemblies was to use a single, preferred tilling path to produce a single consensus representation of the genome. Subsequent analysis has shown that for most mammalian genomes a single tilling path is insufficient to represent a genome in regions with complex allelic diversity. The GRC is now working to create assemblies that better represent this diversity and provide more robust substrates for genome analysis.

Mouse (GRCm38_68) genome


- Most chromosomes/contigs start with 3M 'N's
- These are the "telomeres", a repetitive sequence of the "TTAGGG" hexamer whose length is unknown
- Changes after each mitotic subdivision
- Some chromosomes have gaps with Ns where the assembly is still incomplete



. . .

A Human Genome

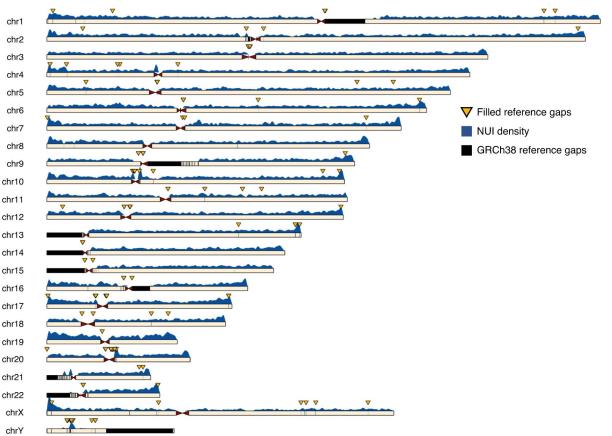
- 24 chromosomes with 3.27 Bbp
- Chr 1 (248 Mbp) is the longest Chr 21 (46 Mbp) is the smallest
- Composed of DNA from 13 volunteers, and 26 haploid genomes
- Humans are "outbred" with two "diploid" chromosome pairs •
- C57BL/6J is diploid too, but both chromosomes are identical •
- It is "consensus-based" rather than "sample-based"
- Thus it is a genome that no one actually has it.

Comp 716 - Fall 2021

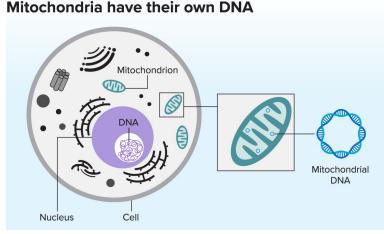
A Consensus Genome

- The reference base is the most common at each position
- It is population dependent (did the 13 contributors represent all of humanity)
- What if there are structural differences between contributors?
- Copy number differences?
- Technical issues resulted in most of the assembly (80%) comes from only 8 people. One male accounts for 66%.

	-20		1	20 I
	CTTTTCAAGG	AGTATTTCCT	ATGAACGAGT	TAGACGGCAT
	CATTGCAAAG	GGAATAATCT	ATGAACGCAA	TAATTATTGA
	CATTTTCAGG	ATAACTTTCT	ATGAAAGTAA	ACTTAATACT
	GAAAAGAAAT	CGAGGCAAAA	ATGAGCAAAG	TCAGACTCGC
	TGCAAAAAAA	GGAAGACCAT	ATGCTTGACG	CTCAAACCAT
	TTTTTGTGGA	GAAGACGCGT	GTGATTGTTA	AACGACCCGT
	GTTATTAAGG	ATATGTTCAT	ATGTTTTTCA	AAAAGAACCT
	TACCCACCGG	ATTTTTACCC	ATGCTCACCG	TTAAGCAGAT
	AATCAAAATG	GAATAAAATC	ATGCTACCAT	CTATTTCAAT
	ATCACAGGGG	AAGGTGAGAT	ATGCACTCTC	AAATCTGGGT
	ACATCCAGTG	AGAGAGACCG	ATGCATCCGA	TGCTGAACAT
Consensus	AATTTAAAGG	AGAATTACCT	ATGAACGCAA	TAATAAACAT
Sequence Logo	A STA	ъĨ	Î G	Ê
	_ x Ŷ ₽_X ÅdG	AŝAa-, 566	×_\$=346VIN	\$3_*_\$
Conservation				



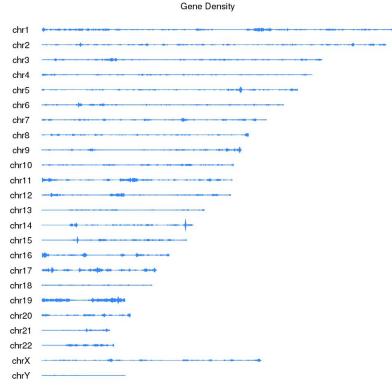
Human Genome Diversity


- Efforts are underway to create a better Human reference genome
- Combining > 300 sequenced and assembled and truly diverse samples uncovers significant non-reference unique insertions (NUIs)
- Sequences someone has that aren't in the humane reference
- What are these?
 - Genes
 - Structural variants

Comp 716 - Fall 2021

Mitochondrial Genomes

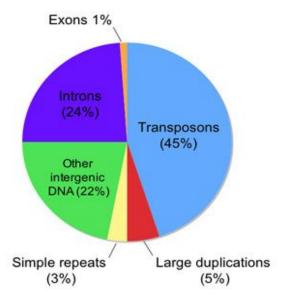
- Mitochondria organelles have their own DNA sequence
- Circular like bacterial genomes
- Inherited strictly from maternal genome
- Basis for the "Eve" model of out-of-africa
- Small, but with many copies
 - 16,295 in mouse with 37 genes
 - 16,569 in human with 37 genes

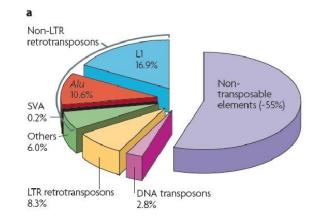


KNOWABLE MAGAZINE

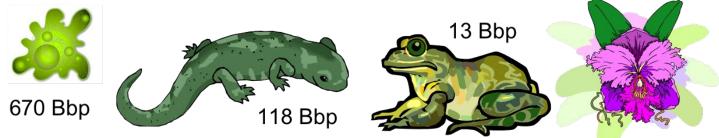
Genes in Genomes

- A typical gene is roughly 27,000 bases
- The largest known human gene (dystrophin) has 2.4 million bases
- Estimated number of human genes is roughly 20,000-25,000
- The genome is nearly identical for every human (99.9%)
- Human DNA is 98% identical to chimpanzee DNA.
- The functions are unknown for more than 50% of discovered genes.
- Genes appear to be concentrated in random areas along the genome, with vast expanses of noncoding DNA between.




Other Stuff in Genomes

There are huge parts of the genome that are hard to sequence and assemble. They have a history of being mobile, and could segregate in populations They have genes

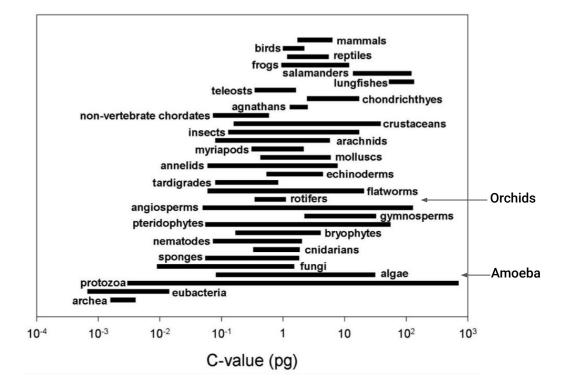

the transposable element content of the human genome.

Is Bigger Better? More Advanced?

- The genome size of a species is relatively constant
- Large variations can occur across species lines
- Not strictly correlated with organism complexity
- Genome lengths can vary as much as 100 fold between similar species
- Length and variability are more of an indications of a phylum's susceptibility to mutation

Amoeba (Amoeba dubia) ~ 670 Bbp

Salamander (120.60pg, Necturus lewisi, Gulf coast waterdog) ~118 Bbase pairs Frog (13.40pg, Ceratophrys ornata (8n), Ornate horned frog) ~13 Bbase pairs Marbled Lungfish (130pg) ~ 130 Bbp


Orchids (angiosperms) have the the largest variation within a species

(strains that can interbreed and generate fertile progeny) with a range that varies at least 168-fold.

168 x

Genome Variation

Length and variability are more of an indications of a phylum's susceptibility to mutations than its complexity

(C-value = the Amount of DNA in an unreplicated gametic nucleus. It is measures in pico Grams, and 1pg = 978M base pairs.)

Next Time

The technology of sequencing

