BCB 716 - Sequence Analysis

- A combined problem set 1 and 2 will go out on Thursday
- Your course logins should work now
- Password is your PID

DNA Variant Calling and Analysis

From last time

- Aligners generate SAM files
 - An attempt is made to find the closest match for a given read, or read-pair to a reference
 - Alignments are performed independently and in parallel
 - SAM files include
 - the original sequence and quality string from the FASTQ file
 - Initially read pairs are considered together
 - Alignment tolerances
 - Opposite strands
 - Must satisfy a maximum gap distance
 - A placement of the first base that is "normalized" to reference orientation
 - An alignment represented as a CIGAR string
 - Various alignment scores (edit distances, etc.)

- SAM files are a lot to interpret

- Statistic provide a rough idea
- Localized analysis provides more insights

SAM to BAM

- SAM files tend to be large and difficult to index and manipulate
- Converted into Binary Alignment Maps (BAM files)
- This is done using a toolset called SAMtools
- First to convert a SAM file to a BAM file

```
$ samtools view -S -b CC053.sam -o CC053.bam
$ ls -l CC053.*
-rw-rw-r-- 1 mcmillan its_faculty_psx 5.1G Nov 8 14:57 CC053.bam
-rw-rw-r-- 1 mcmillan its_faculty_psx 24G Nov 8 14:22 CC053.sam
```

• BAM files are smaller, and not simply text, making them easier to search

\$ samtools view CC053.bam | head -1 A00434:231:H2K7FDSX2:1:1101:10529:1157 42 99 14 55067154 100M 55067503 449 = GGCTGGAGATGGGGCTGGAGAAGGCGGCTGATCAGGGCTTTCTGAGGGCTCCCTGGAGCCCTCGACTGGCGCCAGGGAAGG CTCAAGAGGAGGATCTGGG XG:i:0 NM:i:1 MD:Z:77G22 YS:i:-4 YT:Z:CP

Sorted and Indexed BAMs

- The reads in a BAM file are roughly in the order they can out of the sequencer
- SAM tools provides a tool to sort the reads genomically

```
$ samtools sort CC053.bam -o CC053.sorted.bam
$ ls -l CC053.*
-rw-rw-r-- 1 mcmillan its_faculty_psx 5.1G Nov 8 14:57 CC053.bam
-rw-rw-r-- 1 mcmillan its_faculty_psx 24G Nov 8 14:22 CC053.sam
-rw-rw-r-- 1 mcmillan its_faculty_psx 3.0G Nov 8 15:11 CC053.sorted.bam
```

- BAM files are even smaller, nearby sequences overlap and compress better
- Last of all we build an index so that the BAM file is easier to search/load

```
$ samtools index CC053.sorted.bam
$ ls -l CC053.*
-rw-rw-r-- 1 mcmillan its_faculty_psx 5.1G Nov 8 14:57 CC053.bam
-rw-rw-r-- 1 mcmillan its_faculty_psx 24G Nov 8 14:22 CC053.sam
-rw-rw-r-- 1 mcmillan its_faculty_psx 3.0G Nov 8 15:11 CC053.sorted.bam
-rw-rw-r-- 1 mcmillan its_faculty_psx 3.0M Nov 8 15:18 CC053.sorted.bam.bai
```

Exercise

Go to the following website:

https://ondemand.rc.unc.edu

You will need to authenticate with your ONYEN

Welcome to OnDemand, a Data Science platform and portal to Longleaf

March 2020 — Open OnDemanu De	ET/	A
-------------------------------	-----	---

OnDemand provides a web-based interface to the Longleaf compute cluster with interactive apps such as Jupyter Notebooks, R Studio, Matlab, Stata, and more. These interactive apps allow you to work directly with your files on ITS-RC systems such as your home directory and /proj.

Note about interactive apps:

Wait here for a few seconds

Eventually you'll get here

Now type a few commands at the command line

• Install an initial set of bioinformatic modules:

```
$ cp /proj/mcmillanlab/BCB716F21/loadModules .
$ loadModules
$ module list
```

```
Currently Loaded Modules:
1) samtools/1.9 3) bowtie2/2.4.1 5) minimap2/2.17
2) bwa-mem2/2.2.1 4) igv/2.8.7
```

• Today we'll discuss IGV

Integrative Genomics Viewer (IGV)

- I typed:
 - \$ igv & # starts the viewer as a background process
- After some machinations, and maximizing

	Applications Places	Syst	tem	a 💴 🤞																					Tue Nov	9, 09:	52
	0											IGV													۲	۵ (0
	File Carlos Vi Human (hg38)	Tra	All	Regions	Tools	Help	-						Go	Ê	4	⊳ 4	¢ [1 × 1]				1		+	
d to are ct			1	1	2	3	1	4	1	5	6	7	1	8	9	10	11	12	18	14	15	16 17	18 18	9 21 20 22	2 X	Y	-
hg38)																											
																											•
	Gene			Í. a		a L	200			27		0.63	108	n.			a d			2102		COR.			0.00		-
	Mata Tarmi	1	-	-bath	differenti		the state	bull be	-	-	Sec. 1	ad add to	-	and a star	1	a state		.اليعم	All and	ناهدا اد		UN UN			Ro. Ro. Bol		•
	Mate Terminal	nal		10		_	_									ñ	100		21	-					403M (of 3,113	м
	Mate lerminal			Log IG1	v												1115		1								

First, you'll need to make sure you are using the correct genome.

I'll use Human (hg38)

Visualizing BAM files

- The Interactive Genome Viewer (IGV) is a standard tool for visualizing sorted BAM files with index files
- You won't see any reads until you get to a window smaller than 30 kb (configurable, but)
- Coverage above
- Alignments below

Visualizing BAM files

- The reads are labelled with variants and INDELS that differ from the reference
- Red reads are separated from mates by a larger gap than expected

Visualizing, Interpreting, and Analyzing Alignment outputs

Comp 716 - Fall 2021