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ABSTRACT
Studying the association between quantitative phenotype (such as
height or weight) and single nucleotide polymorphisms (SNPs) is
an important problem in biology. To understand underlying mecha-
nisms of complex phenotypes, it is often necessary to consider joint
genetic effects across multiple SNPs. ANOVA (analysis of vari-
ance) test is routinely used in association study. Important findings
from studying gene-gene (SNP-pair) interactions are appearing in
the literature. However, the number of SNPs can be up to millions.
Evaluating joint effects of SNPs is a challenging task even for SNP-
pairs. Moreover, with large number of SNPs correlated, permuta-
tion procedure is preferred over simple Bonferroni correction for
properly controlling family-wise error rate and retaining mapping
power, which dramatically increases the computational cost of as-
sociation study.

In this paper, we study the problem of finding SNP-pairs that
have significant associations with a given quantitative phenotype.
We propose an efficient algorithm, FastANOVA, for performing
ANOVA tests on SNP-pairs in a batch mode, which also supports
large permutation test. We derive an upper bound of SNP-pair
ANOVA test, which can be expressed as the sum of two terms. The
first term is based on single-SNP ANOVA test. The second term
is based on the SNPs and independent of any phenotype permuta-
tion. Furthermore, SNP-pairs can be organized into groups, each
of which shares a common upper bound. This allows for maximum
reuse of intermediate computation, efficient upper bound estima-
tion, and effective SNP-pair pruning. Consequently, FastANOVA
only needs to perform the ANOVA test on a small number of can-
didate SNP-pairs without the risk of missing any significant ones.
Extensive experiments demonstrate that FastANOVA is orders of
magnitude faster than the brute-force implementation of ANOVA
tests on all SNP pairs.

Categories and Subject Descriptors: H.2.8 [Database Applica-
tions]: Data Mining; J.3 [Life and Medical Sciences]: Biology and
Genetics

General Terms: Algorithm, Performance
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1. INTRODUCTION
Quantitative phenotype association study analyzes genetic vari-

ation across a population in order to find the genetic factors un-
derlying continuous phenotypes (such as height or weight). These
phenotypes are often complex in the sense that they are likely due
to the effects of multiple genes [6, 24]. The most abundant source
of genetic variation is represented by single nucleotide polymor-
phisms (SNPs). A SNP is a DNA sequence variation occurring
when a single nucleotide (A, T, G, or C) in the genome differs be-
tween individuals of a species. For inbred species, a SNP usually
shows variation between only two of the four possible nucleotide
types [12], which allows us to represent it by a binary variable. The
binary representation of a SNP is also referred to as the genotype
of the SNP.

Various statistics can be applied to measure the association be-
tween SNPs and the phenotypes of interest, among which ANOVA
(analysis of variance) test is one of the standard statistic meth-
ods and has been routinely used in quantitative phenotype associa-
tion study [18]. The goal of ANOVA test is to determine whether
the group means are significantly different after accounting for the
variances within groups. It accomplishes the comparison by de-
composing the total variance in the data into within-group variance
and between-group variance. If the between-group variance is suf-
ficiently larger than the within-group variance, then the test con-
cludes that there is significant (phenotypic) difference between the
groups.

In the application of phenotype-SNP association study, the indi-
viduals’ phenotype values are grouped by the genotype of a SNP
or a subset of SNPs. Figure 1(a) shows an example of strong asso-
ciation between a phenotype and a SNP. 0 and 1 on the x-axis rep-
resent the SNP genotype and the y-axis represents the phenotype.
Each point in the figure represents an individual. It is clear from
the figure that the phenotype values are partitioned into two groups
with distinct means, hence indicating a strong association between
the phenotype and the SNP. On the other hand, if the genotype of a
SNP partitions the phenotype values into groups as shown in Figure
1(b), the phenotype and the SNP are not associated with each other.

Recent advances in high-throughput techniques enable genotyp-
ing SNPs in genome-wide scale, resulting in large datasets con-
taining thousands to hundreds of thousands of SNPs [1, 3]. The
vast number of SNPs has posed great computational challenge to
genome-wide association study. In order to understand the un-
derlying biological mechanisms of complex phenotype, one needs
to consider the joint effect of multiple SNPs simultaneously. Al-
though the idea of studying the association between phenotype and
multiple SNPs is straightforward, the implementation is nontriv-
ial. For a study with total N SNPs, in order to find the associa-
tion between n SNPs and the phenotype, a brute-force approach
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Figure 1: Examples of associations between a phenotype and
two different SNPs

is to exhaustively enumerate all
�
N

n � possible SNP combinations
and evaluate their associations with the phenotype. The computa-
tional burden imposed by this enormous search space often makes
the complete genome-wide association study intractable.

The computational challenge of genome-wide association study
is further compounded by another well-known statistical problem
– the multiple testing problem [14]. The multiple testing problem
can be described as the potential increase in Type I error when sta-
tistical tests are performed multiple times. Let α be the Type I
error for each independent test. If n independent comparisons are
performed, the experimental-wise error α′ is given by

α′ = 1− (1− α)n.

For example, when α = 0.05 and n = 20, α′ = 1 − 0.9520 =
0.64. We have 64% probability to get at least one spurious result.
Determining the statistical significance of the association between
the phenotype and SNPs is crucial. Bonferroni correction based on
the assumption that all n tests are independent is too conservative
for the genome-wise association studies since SNPs are often corre-
lated. Alternatively, permutation procedure can be used and much
preferred in association studies which automatically takes the cor-
relation structure of SNPs into consideration.

The idea of permutation is to randomly permute the phenotype
hundreds to thousands of times. For each permutated phenotype,
the association analysis will be repeated. Then the null distribution
of the test statistics is estimated and used to assess the statistical
significance of the findings from the original phenotype. However,
permutation test is very time-consuming since the test procedure
needs to be performed in all permutations in order to find the thresh-
old.

Algorithm development to support these large scale analysis is
still in its infancy stage. Most existing work focuses on studying
the association between the phenotype and SNP-pairs and can only
handle a small number of SNPs. Given a pair of SNPs, the pheno-
type values can be partitioned into at most four groups by the geno-
type of the SNP-pair, i.e., 00, 01, 10, and 11. Since each SNP has a
distinct location on the genome, the association study of a pheno-
type and SNP-pairs is also called two-locus association mapping.
Important findings are appearing in the literature from studying the
association between phenotypes and SNP-pairs [21, 22, 27].

Although the standard ANOVA test has been a valuable tool
to find association between SNP-pairs and phenotype, it is usu-
ally not performed in genome-wide scale. This is due to the fact
that the search space of two-locus association mapping in genome-
wide scale prohibits an exhaustive search. Suppose that the dataset
consists of N SNPs and the number of permutations is K. The

total number of ANOVA tests is KN(N − 1)/2. Given a mod-
erate number of SNPs N = 10, 000 and number of permutations
K = 1, 000, the number of ANOVA tests is around 5 × 1010.
Therefore, ANOVA test is often reserved for validating a small set
of candidates identified by other methods [17, 25].

In this paper, we examine the computational aspect of ANOVA
test. We present an efficient algorithm, FastANOVA, and show that
the standard ANOVA test can be applied in genome-wide scale for
two-locus association mapping even when the permutation proce-
dure is needed. Unlike algorithms applying heuristics, FastANOVA
is a complete algorithm, i.e., it guarantees to find the optimal solu-
tion, though it does not explicitly examine all possible SNP-pairs.
In fact, a large portion of the SNP-pairs are pruned without the need
of performing the tests. FastANOVA establishes an upper bound
on the two-locus ANOVA test. The upper bound is the sum of two
terms: one based on the ANOVA test between phenotype and a sin-
gle SNP, and the other based on the pair-wise SNP genotype and
the ordered phenotype values. This formulation of the upper bound
allows the algorithm to calculate the bound for a large number of
SNPs together, which enables fast candidate retrieval. Moreover,
the intermediate results for calculating the second term of the upper
bound is independent of phenotype permutations. Hence they only
need to be computed once and can be reused in all permutations.
Applying this bound, FastANOVA is able to identify SNP-pairs
with significant ANOVA test values using only a small fraction of
the time required by performing ANOVA test on all SNP-pairs. The
principles developed in FastANOVA are also applicable to the gen-
eral case of testing SNP subsets containing more than two SNPs.

2. RELATED WORK
The problem of phenotype-SNP association study has attracted

extensive research interests and is an ongoing research area in biol-
ogy and statistic communities. In this section, we give a briefly re-
view of the related work from a computational point of view. Please
refer to [4, 7, 11] for excellent surveys of existing work.

Under the assumption that the number of SNPs is limited, e.g.,
from tens to a few hundreds, exhaustive algorithms that explicitly
enumerate all possible SNP combinations and evaluate their asso-
ciations with the phenotype have been developed [16, 19]. These
methods are not well adapted to genome-wide association study.

To avoid exhaustively enumerating the search space, a common
approach is to break the problem into two steps [8, 10]. First,
a subset of important SNPs are selected. Second, within the se-
lected subset, the association between SNPs and the phenotypes
are searched. These methods are not complete since the SNPs with
weak marginal effects may not be selected in the first place. Ge-
netic algorithm [5, 15] has been applied in finding SNP-pairs for
quantitative phenotypes. These methods cannot guarantee to find
the optimal solution.

Feature selection methods [13] have been proposed to address
the problem of finding important SNPs. In feature selection, the
selected feature subset usually contains features that have low cor-
relation with each other but have strong correlation with the target
feature. In the application of selecting SNPs, the goal is to select
a subset of SNPs that can be used as proxies for all SNPs in the
genome [9, 23]. The selected SNPs can then be used as the input
SNPs in the association study. Apparently, these methods are also
not complete.

3. TWO-LOCUS ANOVA TEST
Let {X1, X2, · · · , XN} be the set of SNPs of M individuals

(Xi ∈ {0, 1}, 1 ≤ i ≤ N ) and Y = {y1, y2, · · · , yM} be the



Xi = 1 Xi = 0
group A group B

(a) Grouping of Y by Xi

Xi = 1 Xi = 0
Xj = 1 group a1 group b1

Xj = 0 group a2 group b2

(b) Grouping of Y by XiXj

Table 1: Possible groupings of phenotype values by the geno-
types of Xi and (XiXj)

quantitative phenotype of interest, where ym (1 ≤ m ≤ M ) is the
phenotype value of individual m.

For any SNP Xi (1 ≤ i ≤ N ), we represent the F-statistic
from the ANOVA test of Xi and Y as F (Xi, Y ). For any SNP-
pair (XiXj), we represent the F-statistic from the ANOVA test of
(XiXj) and Y as F (XiXj , Y ).

The basic idea of ANOVA test is to partition the total sum of
squared deviations SST into between-group sum of squared devia-
tions SSB and within-group sum of squared deviations SSW :

SST = SSB + SSW .

In our application of two-locus association study, Table 1(a) and
Table 1(b) show the possible groupings of phenotype values by the
genotypes of Xi and (XiXj) respectively.

Let A, B, a1, a2, b1, b2 represent the groups as indicated in Table
1(a) and Table 1(b). We use SSB(Xi, Y ) and SSB(XiXj , Y ) to
distinct the one locus (i.e., single-SNP) and two locus (i.e., SNP-
pair) analyses. Specifically, we have

SST (Xi, Y ) = SSB(Xi, Y ) + SSW (Xi, Y ),

SST (XiXj , Y ) = SSB(XiXj , Y ) + SSW (XiXj , Y ).

The F-statistics for ANOVA tests on Xi and (XiXj) are:

F (Xi, Y ) =
M − 2

2 − 1
×

SSB(Xi, Y )

SST (Xi, Y ) − SSB(Xi, Y )
, (1)

F (XiXj , Y ) =
M − g

g − 1
×

SSB(XiXj , Y )

SST (XiXj , Y ) − SSB(XiXj , Y )
, (2)

where g in Equation (2) is the number of groups that the genotype
of (XiXj) partitions the individuals into. Possible values of g are
3 or 4, assuming all SNPs are distinct: If none of groups A, B,
a1, a2, b1, b2 is empty, then g = 4. If one of them is empty, then
g = 3.

Let T = �
ym∈Y

ym be the sum of all phenotype values. The

total sum of squared deviations does not depend on the groupings
of individuals:

SST (Xi, Y ) = SST (XiXj , Y ) = �
ym∈Y

y2
m −

T 2

M
.

Let Tgroup = �
ym∈group

ym be the sum of phenotype values in

a specific group, and ngroup be the number of individuals in that
group. SSB(Xi, Y ) and SSB(XiXj , Y ) can be calculated as fol-
lows:

SSB(Xi, Y ) =
T 2

A

nA

+
T 2

B

nB

−
T 2

M
,

SSB(XiXj , Y ) =
T 2

a1

na1

+
T 2

a2

na2

+
T 2

b1

nb1

+
T 2

b2

nb2

−
T 2

M
.

Note that for any group of A, B, a1, a2, b1, b2, if ngroup = 0,

then
T 2

group

ngroup

is defined to be 0.

The two-locus association mapping with permutation test is typ-
ically conducted in the following way [18].

First, for every SNP-pair (XiXj) (1 ≤ i < j ≤ N ), the
ANOVA test is performed and F (XiXj , Y ) is recorded.

Second, a permutation test is performed to get a reference distri-
bution in order to assess the statistical significance of previous find-
ings. More specifically, a permutation Yk of Y is generated by sam-
pling the phenotype Y without replacement. In other words, phe-
notype values are randomly assigned to individuals in the dataset
with no single phenotype value being assigned to more than one
individual. Let Y ′ = {Y1, Y2, · · · , YK} be the set of K permuta-
tions of Y . For each permutation Yk ∈ Y ′, let FYk

represent the
maximum F-statistic value of all SNP-pairs, i.e.,

FYk
= max{F (XiXj , Yk)|1 ≤ i < j ≤ N}.

The distribution of {FYk
|Yk ∈ Y ′} is then used as the reference

distribution for assessing the statistical significance of F (XiXj , Y )
values found using the original phenotype Y : Given a Type I er-
ror threshold α, the critical value Fα is the αK-th largest value
in {FYk

|Yk ∈ Y ′}. For example, suppose that α = 0.01 and
K = 1000, then Fα is the 10th largest value in {FYk

|Yk ∈ Y ′}.
The SNP-pair (XiXj) whose F-statistic value F (XiXj , Y ) ≥ Fα

is considered as significant at α.
Two computational problems need to be solved in this procedure.

The first one is to find the critical value Fα for a given Type I error
threshold α. The second one is to find all SNP-pairs (XiXj) whose
F-statistics are greater than Fα. We formalize these two problems
as follows.

Problem (1): Given the Type I error threshold α, find the critical
value Fα, which is the αK-th largest value in {FYk

|Yk ∈ Y ′}.
Problem (2): Given the threshold Fα, find all SNP-pairs (XiXj)

such that F (XiXj , Y ) ≥ Fα.
A brute force approach to these two problems is to enumerate all

SNP-pairs and find their F-statistics. In Problem (1), for each per-
mutation Yk ∈ Y , all SNP-pairs need to be enumerated in order to
find the maximum value FYk

. In Problem (2), all SNP-pairs need to
be enumerated to see if their test values are above the threshold Fα.
Computationally, Problem (1) is more challenging, since the per-
mutation number K can range form hundreds to thousands, which
means the running time of finding the critical value Fα can be hun-
dreds to thousands times longer than the running time of finding the
significant SNP-pairs in Problem (2) using a brute-force search.

In the reminder of the paper, we first derive an upper bound on
two-locus ANOVA test value and discuss how this upper bound
enables an efficient ANOVA testing for a single phenotype. Then
we show how this approach can be easily extended to handle the
permutation procedure.

4. THE UPPER BOUND

4.1 Updating F-Statistic
Since the total sum of squared deviations does not change, from

the calculation of F (Xi, Y ) and F (XiXj , Y ) (Equations (1) and
(2)), we know that the relationship between these two tests only de-
pends on the relationship between SSB(Xi, Y ) and SSB(XiXj , Y ).
Next we show that SSB(XiXj , Y ) can be updated from SSB(Xi, Y ).



For groups A, a1 and a2, let

∆A =
T 2

a1

na1

+
T 2

a2

na2

−
T 2

A

nA

=
na2

T 2
a1

+ na1
T 2

a2

na1
na2

−
(Ta1

+ Ta2
)2

na1
+ na2

=
(na2

Ta1
− na1

Ta2
)2

na1
na2

nA

=
(nATa1

− na1
TA)2

na1
(nA − na1

)nA

.

Similarly, we have

∆B =
T 2

b1

nb1

+
T 2

b2

nb2

−
T 2

B

nB

=
(nBTb1 − nb1TB)2

nb1(nB − nb1)nB

.

Thus, SSB(XiXj , Y ) can be updated using SSB(Xi, Y ):

SSB(XiXj , Y ) = SSB(Xi, Y ) + ∆A + ∆B. (3)

Note that if any one of {na1
, na2

, nA} is 0, then ∆A = 0. Sim-
ilarly, if any one of {nb1 , nb2 , nB} is 0, then ∆B = 0.

Next, we develop an upper bound of SSB(XiXj , Y ). We first
show the derivation of an upper bound of ∆A. A similar idea can
be applied to find an upper bound of ∆B .

4.2 Bounds of ∆A and ∆B

Let {ym|ym ∈ A} = {yA1
, yA2

, · · · , yAnA
} be the phenotype

values in group A. Without loss of generality, assume that these
phenotype values are arranged in ascending order, i.e.,

yA1
≤ yA2

≤ · · · ≤ yAnA
.

The derivative of ∆A with respect to Ta1
is:

d∆A

dTa1

=
2nA(nATa1

− na1
TA)

na1
(nA − na1

)nA

.

Thus we have

∆A monotonically

��� �� increases if Ta1
≥

na1
TA

nA

;

decreases if Ta1
≤

na1
TA

nA

.

We have the range of Ta1
:

Ta1
∈ [la1

, ua1
] = [

na1�
i=1

yAi
,

nA�
i=nA−na1

+1

yAi
].

The maximum value of ∆A is attained when Ta1
= la1

or
Ta1

= ua1
, i.e.,

∆A ≤
max{(nAla1

− na1
TA)2, (nAua1

− na1
TA)2}

na1
(nA − na1

)nA

. (4)

We use R1(XiXjY ) to denote this upper bound.
Let {ym|ym ∈ B} = {yB1

, yB2
, · · · , yBnB

} be the phenotype
values in group B. Without loss of generality, assume that these
phenotype values are arranged in ascending order, i.e.,

yB1
≤ yB2

≤ · · · ≤ yBnB
.

Similarly, we can derive the bound on ∆B:

∆B ≤
max{(nBlb1 − nb1TB)2, (nBub1 − nb1TB)2}

nb1(nB − nb1)nB

. (5)

Symbols Formulas

la1 � na1

i=1 yAi

ua1 � nA

i=nA−na1
+1 yAi

R1(XiXjY )
max{(nAla1

− na1
TA)2, (nAua1

− na1
TA)2}

na1
(nA − na1

)nA

lb1 � nb1

i=1 yBi

ub1 � nB

i=nB−nb1
+1 yBi

R2(XiXjY )
max{(nBlb1 − nb1TB)2, (nBub1 − nb1TB)2}

nb1(nB − nb1)nB

Table 2: Notations for the bounds on ∆A and ∆B

We use R2(XiXjY ) to denote this upper bound. The symbols
used in Inequalities (4) and (5) are summarized in Table 2.

From Equation (3), Inequalities (4) and (5), we have the overall
upper bound on SSB(XiXj , Y ):

THEOREM 4.1. (Upper bound of SSB(XiXj , Y ))

SSB(XiXj , Y ) ≤ SSB(Xi, Y ) + R1(XiXjY ) + R2(XiXjY ).

PROPERTY 4.2. The upper bound in Theorem 4.1 is tight.

The tightness of the bound is obvious from the derivation of
the upper bound, since there exists some genotype of SNP-pair
(XiXj) that makes the equality hold. For the same reason, we
have the following property.

PROPERTY 4.3. The upper bound in Theorem 4.1 does not ex-
ceeds the total sum of squared deviations, i.e.,

SSB(Xi, Y ) + R1(XiXjY ) + R2(XiXjY ) ≤ SST (XiXj , Y ).

5. THE FASTANOVA ALGORITHM
In this section, we show how our algorithm FastANOVA uti-

lizes the upper bound in Theorem 4.1 to achieve efficient two-locus
ANOVA testing. In Section 5.1, we describe the method for Prob-
lem (2) discussed in Section 3, that is, given the threshold Fα, find
all SNP-pairs whose F-statistics are greater than Fα. Then in Sec-
tion 5.2, we discuss how FastANOVA performs in permutation pro-
cedure, i.e., the scenario of Problem (2) in Section 3.

5.1 One Phenotype
Given the threshold Fα, to find all SNP-pairs whose F-statistics

are greater than Fα, a brute-force approach is to enumerate all SNP-
pairs. To expedite this process, we employ the inequality in The-
orem 4.1 to prune SNP pairs that will have no chance to pass the
significance threshold Fα. From Equation (2), we know that find-
ing SNP-pairs (XiXj) whose F-statistics F (XiXj , Y ) ≥ Fα is
equivalent to finding SNP-pairs satisfying

SSB(XiXj , Y ) ≥
SST (Xi, Y )

M−g

(g−1)Fα
+ 1

= θ.

Theorem 4.1 suggests that we only need to compute the F-statistics
for the SNP-pairs that satisfy:

SSB(Xi, Y ) + R1(XiXjY ) + R2(XiXjY ) ≥ θ.

We refer to these SNP-pairs as candidate SNP-pairs.
We now discuss how to apply the upper bound in Theorem 4.1 in

detail. The set of all SNP-pairs is partitioned into non-overlapping
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A pointer to candidates
whose (na1, nb1) = (7, 6)

Figure 2: The index array Array(Xi) for efficient retrieval of
the candidate SNP-pairs

groups such that the upper bound can be readily applied to each
group. For every Xi (1 ≤ i ≤ N), let AP (Xi) be the set of
SNP-pairs

AP (Xi) = {(XiXj)|i + 1 ≤ j ≤ N}.

For all SNP-pairs in AP (Xi), nA, TA, nB , TB and SSB(Xi, Y )
are constants. Moreover, la1

, ua1
are determined by na1

, and lb1 ,
ub1 are determined by nb1 . Therefore, in the upper bound, na1

and nb1 are the only variables that depend on Xj and may vary for
different SNP-pairs (XiXj) in AP (Xi).

Note that na1
is the number of 1’s in Xj when Xi takes value 1,

and nb1 is the number of 1’s in Xj when Xi takes value 0. It is easy
to prove that switching na1

and na2
does not change the F-statistic

value and the correctness of the upper bound. This is also true if
we switch nb1 and nb2 . Therefore, without loss of generality, we
can always assume that na1

is the smaller one between the number
of 1’s and number of 0’s in Xj when Xi takes value 1, and nb1

is the smaller one between the number of 1’s and number of 0’s in
Xj when Xi takes value 0. The following property specifies the
values that na1

and nb1 can take. The proof is straightforward and
omitted here.

PROPERTY 5.1. If there are m 1’s and (M−m) 0’s in Xi, then
for any (XiXj) ∈ AP (Xi), the possible values that na1

can take
are {0, 1, 2, · · · , bm/2c}. The possible values that nb1 can take
are {0, 1, 2, · · · , b(M −m)/2c}.

To efficiently retrieve the candidates, the SNP-pairs (XiXj) in
AP (Xi) are grouped by their (na1

, nb1) values and indexed in a
2D array, referred to as Array(Xi).

EXAMPLE 5.2. Suppose that there are 32 individuals, and the
genotype of Xi consists of half 0’s and half 1’s. Thus for the
SNP-pairs in AP (Xi), the possible values of na1

and nb1 are
{0, 1, 2, · · · , 8}. Figure 2 shows the 9 × 9 array, Array(Xi),
whose entries represent the possible values of (na1

, nb1) for the
SNP-pairs (XiXj) ∈ AP (Xi). The entries in the same column
have the same na1

value. The entries in the same row have the same
nb1 value. The na1

value of each column is noted beneath each
column. The nb1 value of each row is noted left to each row. Each
entry of the array is a pointer to the SNP-pairs (XiXj) ∈ AP (Xi)
having the corresponding (na1

, nb1) values.

Note that for a SNP-pair (XiXj) ∈ AP (Xi), na1
and na2

can
be calculated faster than performing the two-locus ANOVA test. To
obtain na1

and na2
, we only need to count the numbers of 0’s and

1’s of Xj when Xi is equal to 0 and 1 respectively, which can be
done by a linear scan of the M × 2 binary matrix consisting of the

Algorithm 1: FastANOVA (no phenotype permutation)

Input: SNPs X ′ = {X1, X2, · · · , XN}, phenotype Y , and
threshold Fα

Output: find the set of SNP-pairs Result(Y ) =
{(XiXj)|F (XiXj , Y ) ≥ Fα, 1 ≤ i < j ≤ N}

for every Xi ∈ X ′, do1
index (XiXj) ∈ AP (Xi) by Array(Xi);2
access Array(Xi) to find the candidate SNP-pairs and3
store them in Cand(Xi, Y );
for every (XiXj) ∈ Cand(Xi, Y ) do4

if F (XiXj , Y ) ≥ Fα then5
Result(Y )← (XiXj);6

end7
end8

end9
return Result(Y ).10

genotypes of Xi and Xj . In contrast, to calculate the F-statistic,
we first need to scan the M ×3 binary matrix consisting of Xi, Xj

and Y in order to find out how the phenotype values are grouped
by the genotype of (XiXj). Then a constant time O(t) is required
to compute the F-statistic.

PROPERTY 5.3. For any SNP Xi, the maximum number of the

entries in Array(Xi) is (d
M

4
e+ 1)2.

The proof of Property 5.3 is straightforward and omitted here. In
order to find candidate SNP-pairs, we scan all entries in Array(Xi)
to calculate their upper bounds. Since the SNP-pairs indexed by
the same entry share the same (na1

, nb1) value, they have the same
upper bound. In this way, we can calculate the upper bound for
a group of SNP-pairs together. Note that for typical genome-wide
association studies, the number of individuals M is much smaller
than the number of SNPs N . Therefore, the additional cost for ac-
cessing Array(Xi) is minimal compared to performing ANOVA
tests for all pairs (XiXj) ∈ AP (Xi).

Algorithm 1 describes the FastANOVA algorithm for finding the
SNP-pairs whose F-statistics are greater than the threshold Fα.
The inputs of FastANOVA include the N SNPs, the phenotype
Y and the critical value Fα. For each Xi, FastANOVA first in-
dexes (XiXj) ∈ AP (Xi) using Array(Xi). Then it retrieves the
candidate SNP-pairs by accessing Array(Xi) and records them in
Cand(Xi, Y ). The candidates in Cand(Xi, Y ) are then evaluated
for their F-statistics. The candidates whose F-statistics are greater
than or equal to Fα are reported by the algorithm.

5.2 Permutation Procedure
For multiple tests, permutation procedure is often used in genetic

analysis for controlling family-wise error rate. For genome-wide
association study, permutation is less commonly used because it
often entails prohibitively long computation time. Our FastANOVA
algorithm makes permutation procedure feasible in genome-wide
association study.

Let Y ′ = {Y1, Y2, · · · , YK} be the K permutations of the phe-
notype Y . Following the idea discussed in Section 5.1, the upper
bound in Theorem 4.1 can be easily incorporated in the algorithm
to handle the permutations.

PROPERTY 5.4. For every SNP Xi, the indexing structure
Array(Xi) is independent of the permuted phenotypes in Y ′.

The correctness of this property relies on the fact that, for any
(XiXj) ∈ AP (Xi), na1

and nb1 only depend on the genotype



Algorithm 2: FastANOVA (for permutation test)

Input: SNPs X ′ = {X1, X2, · · · , XN}, phenotype
permutations Y ′ = {Y1, Y2, · · · , YK}, and the Type I
error α

Output: find the critical value Fα

T list← αK dummy phenotype permutations with1
F-statistics 0 ;
Fα = 0;2
for every Xi ∈ X ′, do3

index (XiXj) ∈ AP (Xi) by Array(Xi);4
for every Yk ∈ Y ′, do5

access Array(Xi) to find the candidate SNP-pairs6
and store them in Cand(Xi, Yk);
for every (XiXj) ∈ Cand(Xi, Yk) do7

if F (XiXj , Yk) ≥ Fα then8
update T list;9
Fα = the smallest test value in T list;10

end11
end12

end13
end14
return Fα.15

of the SNP-pair and thus remain constant for different phenotype
permutations. Therefore, for each Xi, once we build Array(Xi),
it can be reused in all permutations.

The FastANOVA algorithm for permutation test is described in
Algorithm 2. The inputs include the N SNPs, K phenotype per-
mutations, and the Type I error threshold α. The goal is to find the
critical value Fα, which is the αK-th largest value in {FYk

|Yk ∈
Y ′}. Recall that FYk

is the maximum F-statistic value for pheno-
type Yk. We use T list to keep the αK phenotype permutations
having the largest F-statistics found by the algorithm so far. Ini-
tially, T list contains αK dummy phenotype permutations with
test values 0. The smallest F-statistic value in T list, initially 0,
is used as the threshold to prune the SNP-pairs. For each Xi,
FastANOVA first indexes (XiXj) ∈ AP (Xi) using Array(Xi).
Then it finds the set of candidate SNP-pairs Cand(Xi, Yk) by ac-
cessing Array(Xi) for every phenotype permutation Yk. The can-
didates in Cand(Xi, Yk) are then evaluated for their F-statistics. If
a candidate’s F-statistic value is greater than the current threshold,
then T list is updated accordingly: If the candidate’s phenotype Yk

is not in the T list, then the phenotype in T list having the small-
est F-statistic value is replaced by Yk. If the candidate’s phenotype
Yk is already in T list, we only need to update its corresponding
F-statistic value to be the maximum value found for the phenotype
so far. The threshold is also updated to be the smallest F-statistic
value in T list.

5.3 Complexity Analysis
In this section, we study the time and space complexities of the

FastANOVA algorithm for permutation test. The complexity for a
single phenotype can be analyzed in a similar way.

Time complexity: For each Xi, FastANOVA needs to index
(XiXj) in AP (Xi). The complexity to build the indexing struc-
ture for all SNPs is O(N(N −1)M/2). The worst case for access-
ing all Array(Xi) for all permutations is O(N × K × (dM

4
e +

1)2) = O(NKM2). Let C = � i,k
|Cand(Xi, Yk)| represent

the total number of candidates. The overall time complexity of Fas-
tANOVA is thus O(N(N − 1)M/2) + O(NK × (dM

4
e+ 1)2) +

O( � i,k |Cand(Xi, Yk)|M) = O(N2M +NKM2 +CM). The
experimental results show that the overhead of building the index-

ing structures and accessing them for candidate retrieval are negli-
gible when large permutation tests are needed. Note that the time
complexity of the brute-force approach is O(KN(N −1)M/2) =
O(KN2M).

Space complexity: The total number of variables in the dataset,
including the SNPs and the phenotype permutations, is N+K. The
maximum space of the indexing structure Array(Xi) is O((dM

4
e+

1)2 + N). Note that for each SNP Xi, FastANOVA only needs to
access one indexing structure, Array(Xi), for all permutations.
Once the evaluation process for Xi is done for all permutations,
Array(Xi) can be cleared from the memory. Therefore, the space
complexity of FastANOVA is O((N +K)M)+O((dM

4
e+1)2 +

N) = O((N + K)M) since M � N . The space complexity is
linear to the dataset size.

6. EXPERIMENTAL RESULTS
In this section, we present extensive experimental results on eval-

uating the performance of the FastANOVA algorithm. We show (1)
the runtime comparison between FastANOVA and the brute-force
approach under various experimental settings, (2) the punning ef-
fect of the upper bound, and (3) the relative computational cost of
each component of FastANOVA. FastANOVA is implemented in
C++. The experiments are performed on a 2.4 GHz PC with 1G
memory running WindowsXP system.

Dataset: The SNP dataset used for the experiments is extracted
from a set of combined SNPs from the 140k Broad/MIT mouse
dataset [26] and 10k GNF [2] mouse dataset. This merged dataset
has 156,525 SNPs for 71 individuals. The missing values in the
dataset are imputed using NPUTE [20]. We use both real pheno-
types and synthetic phenotypes in our experiments. The real phe-
notype data is available from the Jackson Lab [3].

6.1 Real Phenotypes
We use three real phenotypes in our experiments: cardiovascu-

lar (blood pressure), metabolism (water intake), and neurosensory
(acoustic startle response). Table 3 shows the statistics of the geno-
type datasets corresponding to the three phenotypes. The number
of SNPs in the table indicates the number of unique SNPs in each
genotype dataset.

cardiovascular metabolism neurosensory
# individuals 19 26 34

# SNPs 14,513 43,856 66,006

Table 3: Statistics of the genotype datasets

We first show the results on finding the critical value Fα, which
is more time-consuming than finding the significance SNP-pairs
given the critical value Fα for a single phenotype.

6.1.1 Finding critical value Fα

FastANOVA v.s. the brute-force approach We compare Fas-
tANOVA with the brute-force approach under various experimental
settings. Since the brute-force approach is very time-consuming,
we use a moderate number of SNPs and permutations in the de-
fault setting in order to show the performance comparisons. The
default setting is as follows: The Type I error threshold α = 0.01.
The number of permutations is 100. The number of SNP is 10,000
for the two larger datasets of metabolism and neurosensory, and
2,900 for the cardiovascular SNP dataset. These experimental set-
tings are chosen to demonstrate the performance gain and enhanced
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Figure 3: Performance comparison between FastANOVA and the brute-force approach when varying Type I error thresholds
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Figure 4: Performance comparison between FastANOVA and the brute-force approach when varying the number of SNPs
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Figure 5: Performance comparison between FastANOVA and the brute-force approach when varying the number of permutations

scalability offered by FastANOVA over the brute-force implemen-
tation. FastANOVA can handle much larger SNP panels and larger
number of permutation tests. The performance of FastANOVA is
expected to follow the same trends presented in the remainder of
this section.

Figures 3, 4, and 5 show the running time comparison of Fas-
tANOVA and the brute-force approach on the three genotype phe-
notype datasets using different settings. The y-axis is in logarithm
scale. The numbers above the runtime line of FastANOVA indi-
cate the ratio of the runtimes of the brute-force approach over Fas-
tANOVA. We terminate the programs that have run over 72 hours
without completion.

Figure 3 shows the runtime comparison when varying the Type
I error thresholds. For each dataset, the runtime of the brute-force
approach does not change over different Type I error thresholds.
The runtime of FastANOVA decreases as the threshold decreases.
FastANOVA offers 218 fold speedup when α = 0.05 and 293 fold
speedup when α = 0.01 on cardiovascular dataset. We can also ob-

serve a similar two-orders-of-magnitude speedup in the metabolism
and neurosensory datasets. This is consistent with the pruning ef-
fect of the upper bound, which will be presented later in this sec-
tion. In general, the lower the Type I error threshold, the more
powerful the pruning effect, hence the faster the algorithm.

Figure 4 depicts the comparison of these two approaches when
the number of SNPs changes. From these figures, it is clear that
FastANOVA is about two orders of magnitude faster than the brute-
force approach. The brute-force approach cannot finish in 72 hours
when the number of unique SNPs is greater than 26k in the metabolism
dataset and greater than 24k in the neurosensory dataset. We ob-
serve that the runtime ratio tends to increase (approaching three-
orders-of-magnitude speedup) as the number of SNPs increases.
This indicates that the performance gain of FastANOVA is even
higher for larger SNP datasets.

Figure 5 shows the runtime comparison when the number of phe-
notype permutations changes. The runtime of the brute-force ap-
proach is linear with respect to the number of permutations. Fas-



cardiovascular metabolism neurosensory
0.05 99.881% 99.724% 99.701%
0.04 99.907% 99.758% 99.751%

α 0.03 99.928% 99.797% 99.792%
0.02 99.949% 99.877% 99.853%
0.01 99.974% 99.929% 99.911%
1st 99.974% 99.929% 99.911%
2nd 99.991% 99.985% 99.979%

# SNPs 3rd 99.996% 99.996% 99.997%
4th 99.998% 99.996% 99.997%
5th 99.998% 99.993% 99.998%
100 99.974% 99.929% 99.911%
200 99.966% 99.935% 99.917%

# Perm. 300 99.977% 99.962% 99.919%
400 99.977% 99.961% 99.914%
500 99.974% 99.953% 99.907%

Table 4: Pruning effects on cardiovascular, metabolism and
neurosensory datasets when finding critical value Fα

tANOVA is consistently two orders of magnitude faster than the
brute-force approach. The performance gap increases as the num-
ber of permutations increases.

Pruning effect of the upper bound Table 4 shows the percent-
age of SNP-pairs pruned under different experimental settings. Since
the three datasets have different numbers of SNPs, the 1st to 5th
rows in the category of "# SNPs" correspond to the settings from
left to right on x-axis in each plot in Figure 4. Most SNP-pairs are
pruned under all settings. Moreover, as the Type I error threshold
α decreases, the pruning ratio increases, which is consistent with
runtime comparison shown in Figure 3. As the number of SNPs
increases, the pruning ratio also increases. This is because, with
more SNPs, the dynamic threshold used to prune the search space
becomes higher. Hence a larger portion of SNPs are pruned. This
is consistent with results shown in Figure 4. Note that from Table
4 we observe that the pruning ratio tends to remain steady when
the number of permutations changes. However, we observe that the
runtime ratio increases as the number of permutations increases.
The reason for these two different trends will become clear after
we show the results on the computational cost of each component
of FastANOVA in the next subsection.

6.1.2 Finding significant SNP-pairs
In this subsection, we study the comparison between FastANOVA

and the brute-force approach in finding significant SNP-pairs given
a critical value Fα. Only the original phenotype (without permuta-
tions) is used in this procedure. We examine the detailed compu-
tation cost of each component of the FastANOVA algorithm. Fas-
tANOVA has three major components: building the indexing struc-
ture Array(Xi) for every SNP Xi, accessing Array(Xi) to find
the candidate SNP-pairs, and performing ANOVA tests on these
candidates.

Due to space limitation, we only show the performance compari-
son on the metabolism dataset. Similar behaviors are also observed
on the other two datasets. The default experimental setting is the
same as before. Figure 6(a) and Figure 6(b) show the runtime of
these three components when varying the Type I error threshold and
number of SNPs in the dataset respectively. Since Fα is a function
of α, in Figure 6(a), we plot the runtime with respect to α. In
both figures, the three lines from the bottom show the runtime of
these three components. The runtime of the brute-force approach is
the top line. As we can see from these two figures, performing two-
locus ANOVA tests on candidate SNP pairs is two to three orders of
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Figure 6: Runtime of each component of FastANOVA v.s. run-
time of the brute-force approach in the process of finding sig-
nificant SNP-pairs

cardiovascular metabolism neurosensory
97.865% 97.844% 98.061%

Table 5: Pruning effect on cardiovascular, metabolism and neu-
rosensory datasets when finding FYk

for all permutations

magnitude faster than performing such tests on all SNP-pairs. This
is the benefit of the upper bound pruning since most SNP-pairs have
been pruned and only a very small portion of candidates need to be
evaluated for their F-statistics. The cost for accessing the indexing
structures is also small, which demonstrates the efficiency of the
method introduced in Section 5.1 for candidate retrieval. Among
the three components of FastANOVA, the most time-consuming
one is building the index structures. Yet, its runtime is only a small
fraction of the runtime of performing the two-locus ANOVA tests
on all SNP pairs. Note that, in permutation test, building the index
structures is a one time cost. Once the index structures are built,
they can be reused in all permutations. Therefore, the amortized
overhead per permutation decreases when the number of permuta-
tions increases. This is why the pruning ratio remains steady as in
Table 4 while the runtime ratio increases as in Figure 5 when the
number of permutations increases.

6.1.3 Finding FYk
for all permutations

Sometimes the users may be interested in finding FYk
values

of all phenotype permutations. In this way, the users can get the
critical value Fα for any Type I error threshold α ranging from 0
to 1, without re-running the permutation tests for different thresh-
olds. Recall that, given a set of phenotype permutations Y ′ =
{Y1, Y2, · · · , YK}, FYk

= max{F (XiXj , Yk)|1 ≤ i < j ≤ N}
is the maximum F-statistic value for permutation Yk. Fα is the
αK-th largest value in {FYk

|Yk ∈ Y ′}. In this subsection, we
show the pruning effect of the upper bound when it is applied to
determine FYk

for every Yk (1 ≤ k ≤ K). Note that in this case,
for each permutation Yk, the dynamic threshold used to prune the
search space is the largest F-statistic value of Yk identified by the
algorithm so far.

Table 5 shows the pruning ratio of applying the upper bound to
the three real phenotype datasets. The experimental setting is the
same as the default setting before. As expected, the pruning ratios
are slightly lower than those in Table 4, where smaller Type I error
thresholds are used to prune the search space. However, the pruning
ratios on all three datasets are still above 97%. Moreover, finding



uniform normal exponential
0.05 96.469% 97.793% 99.335%
0.04 96.888% 98.222% 99.401%

α 0.03 97.695% 98.631% 99.502%
0.02 98.712% 99.072% 99.617%
0.01 99.605% 99.506% 99.737%
10k 99.605% 99.506% 99.737%
22k 99.864% 99.814% 99.924%

# SNPs 34k 99.907% 99.905% 99.967%
46k 99.928% 99.889% 99.965%
58k 99.941% 99.942% 99.963%
100 99.605% 99.506% 99.737%
200 98.891% 99.398% 99.726%

# Perm. 300 98.897% 99.072% 99.780%
400 98.623% 99.315% 99.762%
500 98.709% 99.199% 99.759%
28 99.756% 99.695% 99.893%
30 99.422% 99.577% 99.880%

# indiv. 32 99.605% 99.506% 99.737%
34 99.073% 99.289% 99.773%
36 98.736% 98.832% 99.745%

Table 6: Pruning effect when finding critical value Fα using
three synthetic phenotypes

all FYk
provides the advantage that we can get the Fα values for

all possible α values instead of just for a specific one.

6.2 Synthetic Phenotypes
To further study the performance of FastANOVA, we generate

three synthetic phenotypes whose values follow three different dis-
tributions: uniform, standard normal, and standard exponential dis-
tribution. Our purpose is to study the pruning effect of the upper
bound under different phenotype distributions. The default setting
of the experiments in this subsection is as follows: #individuals
= 32, #SNPs=10,000, #permutations=100, α = 0.01. There are
60,970 unique SNPs for these 32 individuals.

Table 6 shows the pruning ratio of FastANOVA under different
settings using permutation test. In this table, we also include the
pruning ratio when the number of individuals varies. We observe
that the pruning effects are similar to that of real phenotypes, which
indicates that the upper bound pruning is effective and insensitive
to different phenotype distributions.

7. CONCLUSION AND FUTURE WORK
The large number of available SNPs poses great computational

challenge to the genome-wide association study. To assess the
significance of the findings, permutation test is usually required.
These factors make the association study a very time-consuming
process. Thus tools that can improve the efficiency of the associa-
tion study are in demand.

In this paper we present an efficient algorithm, FastANOVA, for
genome-wide two-locus ANOVA test. FastANOVA is a complete
algorithm which guarantees to find the optimal solution. Experi-
mental results demonstrate that FastANOVA is two to three orders
of magnitude faster than the brute-force alternative. The efficiency
of FastANOVA is gained from two sources. First, it utilizes an
upper bound of the two-locus ANOVA test value to prune a major-
ity of the SNP-pairs. Second, it identifies and reuses computation
units that are independent of the phenotype and hence are invari-
ant in permutation test. By eliminating redundant computation of
these invariant units, FastANOVA is much more efficient than the
brute-force method.

Even though FastANOVA is designed for two-locus association
study of binary SNPs, the principles used in FastANOVA are gen-
eral and applicable to the association study on SNP subsets con-
taining more than two SNPs, and the heterozygous case where
SNPs are encoded as {0, 1, 2}. In our future work, we will investi-
gate how to apply these principles for association study considering
joint effects of more than two SNPs and the heterozygous case.
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